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ABSTRACT

We derive formulae connecting the frequency variations in the spectrum of solar os-
cillations to the dynamical quantities that are expected to change over the solar activity
cycle. This is done for both centroids and the asymmetric part of the fine structure
(so-called even-a coefficients). We consider the near-surface, small-scale magnetic and
turbulent velocity fields, as well as horizontal magnetic fields buried near the base of the
convective zone. For the centroids we also discuss the effect of temperature variation.

We demonstrate that there is a full, one-to-one correspondence between the expan-
sion coefficients of the fine structure and those of both the averaged small-scale velocity
and magnetic fields. Measured changes in the centroid frequencies and the even-a’s over
the rising phase solar cycle may be accounted for by a decrease in the turbulent velocity
of order 1%. We show that the associated temperature decrease may also significantly
contribute to the frequency increase. Alternatively, the increase may be accounted for
by an increase of the small-scale magnetic field of order 100 G, if the growing field is
predominantly radial.

We also show that global seismology can be used to detect a field at the level of a
few times 105 G, if such a field were present and confined to a thin layer near the base
of the convective envelope.

Subject headings: Sun : Helioseismology, solar variability, Submitted to ApJ
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1. Introduction

We study global changes, over the solar cy-
cle, in the sun’s eigenmode frequencies – cen-
troids and asymmetric fine structure – in a search
of physical changes occurring beneath the pho-
tosphere. There is abundant phenomenological
information about the helioseismic changes, but
there is no satisfactory physical model describ-
ing the changes. We consider three possible dy-
namical sources of the evolution – changes in the
sub-photospheric small-scale magnetic and veloc-
ity fields and a large-scale toroidal field buried
in a thin layer near the base of the convection
zone. Here, we develop the formalism needed to
connect these dynamical changes to frequencies
changes.

In our treatment of the small-scale magnetic
field, we generalize the method of Goldreich et
al.(1991, GMWK) to include the generalized ef-
fect of the small-scale magnetic field on nonra-
dial modes, while further generalizing to a non-
spherical distribution of the averaged field. Al-
though it is true that radial modes may ad-
equately represent lower degree (up to about
` = 60) nonradial p-modes, if the magnetic field
effects were confined to the outermost layers, this
is not true for higher degree p-modes or most f-
modes. Still, the more important generalization
is that we treat a non-isotropic, non-spherical
field distribution, which allows us to interpret the
observed evolution of the anti-symmetric part of
the fine structure in the spectrum of solar oscil-
lations (so-called even-a coefficients).

Furthermore, we study effects a small-scale,
random velocity field. A role for the changing
turbulent velocities has been suggested by Kuhn
(1999). However, a first-principles treatment still
needs to be made. We give an estimate of the
associated temperature change and its effect on
oscillation frequencies.

Finally, we consider the effect of a buried
toroidal field, which may be expected to be con-
fined near the base of the convective envelope.

The present work represents an advance over
earlier ones (Gough & Thompson ,1990; Dziem-
bowski & Goode, 1991) because we make a more
explicit and useful formulation by eliminating
derivatives of the unknown dynamical quantities.
This improved development allows us to obtain
more physically revealing formulae. This work
is also aimed at determining a stringent limit on
the size of a buried toroidal field.

2. The Helioseismic Data

Solar frequency data are usually given in the
form

νm
`n = ν̄`n +

∑

k=1

ak,`nP`
k(m), (1)

where the P are orthogonal polynomials (see
Ritzwoller & Lavely 1991 and Schou et al. 1994).
The remaining symbols (n`m), in this equation
have their usual meanings. This representation
ensures that the ν̄`,n are a probe of the spheri-
cal structure, while the a2k – the even-a coeffi-
cients – are a probe of the symmetrical (about the
equator) part of distortion described by the cor-
responding P2k(cos θ) Legendre polynomials. We
note that in lowest order, perturbations that are
symmetrical about the equator induce an asym-
metric change in the fine structure of the oscilla-
tion spectrum.

For the angular integrals, we have

Qm
k,` ≡

∫ 2π

0

∫ 1

−1
|Y m

` |2P2kdµdφ = Sk,`P`
2k(m)

(2)
where µ = cos θ and

Sk,` = (−1)k (2k − 1)!!
k!

(2` + 1)!!
(2` + 2k + 1)!!

(`− 1)!
(`− k)!

.

Following our earlier works (see e.g. Goode
& Dziembowski, 2002), we use here the following
convenient quantities, γk,`n, through the follow-
ing two relations,

∆ν̄`n =
γ0,`n

Ĩ`n

(3)
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and
a2k,`n = Sk,`

γk,`n

Ĩ`n

, (4)

where Ĩ`,n is the dimensionless mode inertia cal-
culated for our reference model. A clear advan-
tage of the γ’s is that their growth replicates the
growth of other measures of solar activity. For
the p-modes, the 1/Ĩ factor takes care of the `-
and most of the ν-dependence in ∆ν̄ and in the
even-a coefficients. The fact that the residual ν-
dependence is weak points to a localization of the
source of the observed frequency changes close to
to the photosphere.

The numerical values of the γ’s scale with
the square of the eigenfunction normalization at
the photosphere. the normalization we adopted
in our analyses of the SOHO MDI data (e.g.
Goode & Dziembowski, 2002) and which is used
throughout present paper, is explained in the
next section. With this normalization, the value
of γ0 reaches up to the 0.3µHz range. The abso-
lute values of γ1 and γ3 are about twice larger.
Having determined the set of γk, one may con-
struct seismic maps of the varying sun’s activity
(Dziembowski & Goode, 2002), that is the γ(µ)
dependence. In such maps, a rising γ reflects the
local rise of in the activity. The highest values
of γ(µ) are about 1µHz and they are reached at
µ ≈ 0.3 and at the peak of the activity. At activ-
ity minimum the highest γ(µ) ≈ 0.2µHz occurs
in the polar region.

In the subsequent sections, we will connect the
γ’s, to magnetic and velocity fields that are ex-
pected to change in the sun over its activity cycle.
To achieve this, we start from a variational prin-
ciple for oscillation frequencies. In our expres-
sions, the `, n subscripts and the m superscript
will not be given unless it is necessary for clarity.

3. Variational principle for oscillation fre-
quencies

There are two ways of deriving the variational
expression for oscillation frequencies. Both rely

on the adiabatic approximation, which is adopted
throughout our study. The first of the two ap-
proaches begins with the linearized equations of
fluid motion about a steady configuration (see e.g
Lynden-Bell & Ostriker, 1967, LBO). The other
uses Hamilton’s principle (see e.g. GMWK; De-
war, 1970). Here, we use the form given by LBO
with some simplification of the variational princi-
ple, while adding the all-important contribution
of the magnetic field, as calculated explicitly by
Dewar (1970). The LBO form is valid for strictly
steady velocity fields. However, we make certain
simplifications, which will be explained later, to
make it applicable to statistically steady fields.
With this, we write

ω2I = −ωC + D (5)

where
I =

∫
d3xρ|ξ|2 (6)

C = 2i
∫

d3xρξ∗ · (v ·∇)ξ, (7)

and where v represents the velocity field. The
eigenvectors, in a spherically-symmetric and time
independent model of the sun, are expressed in
the following standard form

ξ = r[y(r)er +z(r)∇H ]Y m
` (θ, φ) exp(−iωt). (8)

We adopt some approximations regarding the
eigenfunctions. In addition to adiabaticity, we
assume the Cowling approximation is valid, which
is well-justified in our application to solar oscilla-
tions. Further, we will make use of the fact that
the oscillations are either of high degree or high
order, which means that

|ξ| ¿ Max(r|ξ;r|, `|ξ|).
Equivalent approximations were also made by
GMWK but, in addition, they ignored the an-
gular dependence of the displacement.

Like LBO, we separate the various contribu-
tion to D,

D = Dp + Dg + Dv + DM . (9)
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The pressure term,

Dp =
∫

d3xp[Ξ + (Γ− 1)|divξ|2], (10)

is the same as in LBO. The quantity Ξ is a com-
pletely contracted double dyadic product,
∇ξ∗ : ∇ξ. Adopting the standard summation
convention, we have

Ξ = ξ∗j;kξk;j = (ξ∗j ξk;j − ξ∗kdivξ);k + |divξ|2,

where the subscript “;” denotes covariant deriva-
tives. However, with our approximation regard-
ing ξ, contributions from the terms involving the
Christoffel symbols are negligible, and the deriva-
tives may be regarded as component derivatives.
In terms of the radial eigenfunctions, y and z,
with the adopted approximations we have

Ξ ≈ [r(yry;r − yλ);r + λ2]|Y m
` |2 +

r(yz);r|∇HY m
` |2 + [0.5(yrz;r − zλ)|Y m

` |2;θ
+z2∇HY m∗

` ·∇HY m
`;θ];θ + [...];φ,

where

λ = y
gr

c2
− z

ω2r2

c2

is radial eigenfunction corresponding to divξ, g
is the local gravity, and c is the speed of sound.
The last term in Ξ is obtained from the preceding
one by the replacement θ ↔ φ. Further, in the
adopted approximation, we have

ry;r = λ + Λz, (11)

where Λ = `(` + 1) and

rz;r = y − λ

(
N

ω

)2 c2

gr
. (12)

The term containing the Brunt-Väisälä frequency,
N , is of the same order as the first one for p-
modes only, and only in the outermost layers.
However, the whole contribution from the term
involving rz;r is small. Hence, we will ignore the
term, so that

Ξ = λ2|Y m
` |2 + (y2 + λz + Λz2)

(Λ|Y m
` |2 + |∇HY m

` |2) + [...];θ + [...];φ, (13)

The explicit expressions for the last two terms
will not be needed.

The gravity term simplifies to

Dg = −2
∫

d3xρ
g

r
|ξr|2, (14)

after using the Cowling approximation, while the
velocity term,

Dv = −
∫

d3xρ|(v ·∇)ξ|2, (15)

is the same as in LBO, where it was derived for a
steady field velocity field. We will use the same
form in our application to a statistically steady
turbulent field. The expression for the magnetic
term, which is taken from Dewar (1970), is

DM =
1
4π

∫
d3x

[
|(B ·∇)ξ|2 −

2divξ∗B · (B ·∇)ξ +
1
2
|B|2(Ξ + |divξ|2)

]
(16)

We now perturb eq. [5] about the static, non-
magnetic equilibrium state. The ∆ denotes changes
in parameters relative to this state. However, for
centroid frequencies, ∆ is defined with respect to
activity minimum because we do not have mod-
els of the sun predicting centroid frequencies with
µHz precision. Since we want to consider terms
that are quadratic in velocity, in principle, we
need to consider a second order perturbational
expression, which is

∆ω = − C

2I
+

C2/4I − ω∆C + ∆Ds + Dv + DM

2Iω

where

∆Ds = ∆(Dp + Dg)− ω2∆I. (17)
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Actually, we do not calculate the C integral or
its perturbation, but only comment on the role
of the terms in C for various velocity fields. The
first term, which is linear in velocity, results
from rotation, and gives rise to odd-a coefficients,
which we are not treating here. It may be eas-
ily shown that both meridional and statistically
steady turbulence do not contribute. The second
term, ∝ C2 due to rotation gives a negligible con-
tribution ( Dziembowski and Goode, 1992) to p-
mode splitting. The term ∝ ∆C arises from the
first order perturbation of the eigenfunctions due
to the velocity fields. Here the contribution from
rotation and meridional circulation can be shown
to be negligible. The only quadratic effect of ro-
tation, which we found to be significant for p-
modes is that of the centrifugal distortion. Thus,
it is included in the Ds term. For the f-mode
even-a’s, which are not accurately determined,
the terms involving C2 may be important. The
alternative approach, which has been used by us
in all our analyses of the even-a coefficients, is
to evaluate the centrifugal contribution and sub-
tract it from the data. We neglect contribution
from turbulence to the term ∝ ∆C, because we
include only effects of interaction of oscillations
with the averaged velocity fields. It has to be
kept in mind, however, that not all effects of tur-
bulence are included in our formalism. So that
we are left with the expression

∆ω =
1

2Iω
(∆Ds + Dv + DM ) (18)

In the Dv term, we consider only effects of the
turbulent pressure and we will be interested in
the part that may vary with the solar activity.
We do not have yet observational evidence for
changes in turbulent velocity but such changes
are expected. The only global changes in velocity
which were definitely detected are the torsional
oscillations but their effect on frequencies we es-
timated to be insignificant.

The Ds integral may be calculated consider-
ing either Eulerian or Lagrangian perturbations.
The results must be the same. The Dv and DM

integrals are treated as perturbations. We may
see that the integrands do not involve differen-
tiation of the unknown characteristics of the ve-
locity and magnetic fields, rather the differenti-
ation is placed upon the eigenfunctions, which
are known. This is clearly advantageous and we
will apply the same strategy in the evaluations
of ∆Ds.

The calculated frequency perturbation for in-
dividual (`nm)-modes are linked to the γ′s de-
fined in eqs. [3] and [4] by the following relation

∆ωm
`n =

2π

Ĩ`n

∑

k=0

γk,`nQm
k,`, (19)

with
Im
`n = R5

¯ρ̄¯Ĩ`n,

Ĩ`n =
∫

dxx4ρ̃E ,

x =
r

R¯
, ρ̃ =

ρ

ρ̄
,

and
E = y2 + Λz2.

The adopted normalization, leading to maximum
γ’s are in the (0.2− 1)µHz range is

y`,n(rphot) = 2× 104.

4. Dynamical perturbations of the struc-
ture

Here, we include the dynamical effects of the
magnetic B, and those of the velocity fields, v.
We write the condition of mechanical equilib-
rium, in the presence of perturbing force F , in
the following form,

∇p + ρger = F , (20)

where

F ≡ −
(

∂V
∂r

er +
∂H
∂θ

eθ

r

)
= (21)

− 1
4π

[
1
2
∇B2 − (B · ∇)B

]
− ρ(v · ∇)v
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We neglected the perturbation of the gravita-
tional potential, which is justified because we
considering perturbing forces concentrated in thin
layers containing little mass. eq. [20] implies

p = −H+ h(r) (22)

and
ρ =

1
g

∂

∂r
(H− V − h). (23)

The quantities V and H represent non-gas pres-
sures, which in general are anisotropic. It should
be noted that when the non-gas pressure is iso-
tropic, then the mass distribution remains spher-
ically symmetric. The quantity h(r) may only be
determined by utilizing the condition of thermal
equilibrium. For the non-spherically symmetric
parts of the force, the pressure and density follow
from the condition of mechanical equilibrium.

From now on, we treat F as a small perturb-
ing force. Primed letters denote Eulerian pertur-
bations of the respective structure parameters,
letters preceded by δ denote Lagrangian pertur-
bations, and letters without such symbols imply
unperturbed variables. We use the standard re-
lation

δf = f ′ +
df

dr
δr

and we adopt δMr = 0, for both spherical and
aspherical perturbations.

Note that if we make a Legendre expansion
in even orders, P2k(cos θ), of H and V, all the
expansion coefficients p′k and ρ′k, starting from
k = 1 are completely specified. Here we are
considering only even order polynomials because
these are the ones that contribute to the even-
a coefficients. The anti-symmetric (odd-order)
polynomials average out. From eqs. [22] and [23],
we get for k > 0,

p′k = −Hk and ρ′k =
1
g

d

dr
(Hk − Vk). (24)

The expansion coefficients for the Lagrangian
perturbations are calculated as follows. From the

radial component of eq. [20] we have

δkp = −Vk + 4
∫ R

r

δkr

r
gρdr ≈ −Vk (25)

and from mass conservation

dδkr

dr
= −δkρ

ρ
− 2

δkr

r
≈ −δkρ

ρ
. (26)

The approximate equality in the preceding
equation corresponds to neglecting of the pertur-
bation in the mass distribution above the point
under consideration. This is certainly valid for all
of our applications. The approximate equality in
eq. [26] is just the local plane parallel approxima-
tion. This is valid for most of applications con-
sidered here. The only possible exception will be
discussed briefly in subsection 5.1. Both approx-
imations were adopted in GMWK. We stress,
however, they are not needed for deriving expres-
sions for γk, except for k = 0. For k > 0, it is
only important and, in fact well justified, for seis-
mic determination of the aspherical part of the
subphotospheric temperature changes. To this
aim, we first derive an expression for δkr from
the relation between p′k and δkp,

δkr =
Vk −Hk

gρ
. (27)

Then, using the linearized p(ρ, T ) relation we ob-
tain

δkT

T
= − 1

χT p

[
Hk +

(
χρ

d

d ln p
+

χT
d ln T

d ln p

)
(Vk −Hk)

]
. (28)

Here, we used a standard notation in astro-
physics, e.g. χ’s denote derivatives of log p with
respect of the log ρ and log T . We do not put,
however, a subscript 1 on Γ, so as to avoid con-
fusion with the expansion coefficients.

We see that for the non-spherical part, all per-
turbations of thermodynamical quantities are de-
termined by H and V. This is not true for k = 0,
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where one of the thermodynamical parameters is
left free. Choosing the temperature, we have

δ0ρ

ρ
= − 1

χρ

(V0

p
+ χT

δ0T

T

)
, (29)

or, if we choose the entropy per mass variation,
δ0S, in place of δ0T ,

δ0ρ

ρ
= − 1

Γ
V0

p
− χT

χρ

δ0S

cp
. (30)

4.1. Turbulent pressure

The large-scale average of the Reynold’s stress,
F = −ρ(v ·∇)v, due to the turbulent velocity,
is evaluated in the local Cartesian system with
axes parallel to e = (er, eθ, eφ) (effects of cur-
vature are negligible for this small-scale velocity
field). Then, we have

Fi = −(ρvjvi);j + (ρvj);jvi.

We use the following relations

ρvjvi = δjiρv2
i and (ρvj);jvi = −∂ρ

∂t
vi = 0,

where double-subscripted δ is, as usual, the Kro-
necker symbol. That is, we assume uncorrelated
velocity components and the rate of density fluc-
tuations. Hence, we have

Fi = −(ρv2
i );i no summation over i ! (31)

Further, we allow the vertical component (r) to
be statistically different from the two horizontal
(θ and φ) ones. In this, values of ρv2

j are treated
as functions of depth, and slowly varying func-
tions of the co-latitude. The latter dependence
is represented in the form of a Legendre polyno-
mial series,

ρvivj = ρδij

∑

k=0

[δjrT V
k (r) +

1
2
T H

k (r)(δjθ + δjφ)]P2k(cos θ), (32)

where we included only terms that are symmetric
about equator.

Inserting this expression into eq. [31] and using
eq. [22], we get

Vk = ρT V
k , and Hk =

1
2
ρT H

k . (33)

4.2. Small-scale random magnetic field

Our treatment of the small-scale magnetic
field is analogous to that of the turbulent veloci-
ties. That is, the correlation matrix for the field
components is represented in the form of the fol-
lowing Legendre polynomial series,

BiBj = δij

∑

k=0

[δjrMV
k (r) +

1
2
MH

k (r)(δjθ + δjφ)]P2k(cos θ).(34)

Components of the Lorentz force, treated locally
as Cartesian, are given by

Fi =
1
4π

∑

j 6=i

(
BjBi;j − 1

2
(B2

j );i
)

.

Averaging over wide zonal areas and making use
of Bi;i = 0, we get

BθBr;θ + BφBr;φ = −Br (Bθ;θ + Bφ;φ) =
1
2

∂B2
r

∂r
.

Thus,

Fr =
1
8π

∂

∂r

(
B2

r −B2
H

)
,

which is the same expression that was obtained
by GMWK. It yields the net effect of the vertical
component of the random field magnetic on the
vertical structure, and it is opposite to that of the
horizontal components. The radial component
acts as a negative pressure, when it rises the gas
pressure must rise too.

To evaluate the horizontal force, we use

BφBθ;φ = −Bφ;φBθ =
1
2
(B2

θ );θ + Br;rBθ,

to get

Fθ =
1
4π

[
(BrBθ);r +

1
2

(
B2

θ −B2
φ −B2

r

)
;θ

]
=

−(B2
r );θ

8π
.
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Finally, for the coefficients in the expansion of
the magnetic pressure, we obtain

Vk =
MH

k −MV
k

8π
and Hk =

MV
k

8π
. (35)

Just as in the case of the turbulent velocity field
(see eq. [33]), isotropy implies Vk = Hk, hence no
density perturbation, but effects of a departure
from isotropy are clearly different.

4.3. Large-Scale Toroidal magnetic field

The large-scale field, B = Bt(r, θ)eφ, gives
rise to the Lorentz force

F = −∇(B2
t r2 sin2 θ)

8πr2 sin2 θ
≈ −∇(B2

t sin2 θ)
8π sin2 θ

.

The last approximation is valid for a field con-
fined to a narrow layer, which we will assume
here, so that we have

V =
B2

t

8π
and H =

1
8π

∫
dθ

sin2 θ

∂(B2
t sin2 θ)
∂θ

.

We now put Bt(r, θ) in the form of the follow-
ing series,

Bt(r, θ) =
∑

j

√
2j + 1

2j(j + 1)
Bt,j(r)

dPj(cos θ)
dθ

.

(36)
Note that with this representation, Bt,j is the
surface averaged intensity of the field component
at a distance r from the center. Considering
only first two terms in the expansion, we get the
following non-zero components of the Legendre
polynomials expansion for V

V0 =
B2

t,1 + B2
t,2

16π
, (37)

V1 =
1

16π

(
−B2

t,1+
5
7
B2

t,2

)
, V2 = −3B2

t,2

28π
(38)

and for H

H1 = − 1
8π

(
B2

t,1 +
5
7
B2

t,2

)
, H2 = −9B2

t,2

56π
.

(39)

5. The term arising from the structural
perturbation, ∆Ds

The frequency perturbation arising through
the perturbation of the structure for all forces
considered by us is, typically, of the same order
as that arising directly from the forces. We will
express now perturbation the structural term Ds

in terms of V and H calculated in the previous
section. The variational principle ensures that
we may keep ξ (not y and z !) unperturbed.

5.1. Calculations of ∆Ds for centroid fre-
quency shift

Here, using the Lagrangian formulation of the
perturbations is more convenient. Since we have
δ(drr2ρ) = 0, there is no contribution from
∆I. Furthermore, with our approximation for
the eigenfunctions, the contribution from Dg is
negligible. For the present application, it is con-
venient to write eq. [10] in the form,

Dp =
∫

drr2p

(
dZ
dr

+ λ2
)

,

where Z = 2r(Λyz − y2) and, which after inte-
gration by parts becomes

Dp =
∫

drr2
[(

gρ− 2p

r

)
Z + pΓλ2

]
.

In the whole solar envelope the second term in
the coefficient at Z is much less than the first
one and it will be ignored. Now we calculate
∆Ds,0 ≈ ∆Dp using

δg

g
= 2

δZ
Z = −2

δr

r

and

δ(c2)
c2

=
δp

p
(1 + Γp)− δρ

ρ
(1− Γρ),

where we denoted by Γp and Γρ logarithmic
derivatives of Γ. Further, we use eq. [25] to elimi-
nate δp and eq. [29] to eliminate δρ. Finally, with
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our approximations regarding the eigenfunctions,
we get

∆Ds,0 =
∫

drr2
[
DisothV0 + p

(
DT

δT

T
+Dr

δr

r

)]

(40)
where

Disoth = −Γ

[(
1 + Γp +

1 + Γρ

χρ

)
λ2 +

2Λzλ

χρ

]
,

(41)

DT = −χT

χρ
Γ[(1 + Γρ)λ2 + 2Λzλ], (42)

and

Dr = 2pΓΛzλ + 6
grρ

p
(y2 − Λyz).

The relative roles of the temperature and ra-
dius depends on the character of perturbation
and mode. As pointed out by Dziembowski,
Goode and Schou (2001, heretoforward DGS),
the latter may become dominant for f-modes, if
the magnetic perturbation is predominantly be-
low the region sampled by these modes. For f-
modes, to a very good accuracy, we may use

Dr = −6
grρ

p
Λyz (43)

In Section 9 of the present paper, we will dis-
cuss in greater details the role of temperature and
radius variation in the f- and p-mode frequency
changes.

If instead of eq. [29], we use eq. [30], then we
get an alternative expression for ∆Ds,0 which is
particularly useful if the perturbing force is local-
ized in the deeper layers, which may be regarded
adiabatic on the eleven-year scale,

∆Ds,0 =
∫

drr2
[
DadV0 +p

(
DT

δ0s

cp
+Dr

δ0r

r

) ]
,

(44)
where

Dad = −[Γ(1 + Γp) + 1 + Γρ]λ2 − 2Λzλ. (45)

5.2. Calculations of ∆Ds for the splittings

In the present application, it is more conve-
nient to treat the perturbations of the structural
parameters as being Eulerian. We consider dis-
tortions proportional to P2k. We will see that
within our approximation, all the angular inte-
grals appearing in ∆I, ∆Dp and ∆Dg reduce
to Qk. These factors take care of the k and m
dependence. The property is self-evident in the
case of Dg. From eq. [14] with the use of the
definitions given in eqs. [8] and [2], we get

∆Dg = −2Qk

∫
drr3gρ′ky

2

and with eq. [24] after one integration by parts,
and use of eq. [11], we get

∆Dg = 4Qk

∫
drr2(Vk −Hk)y(λ + Λz). (46)

The cases of Ip and Dp are more involved. We
first note that

∫ 1

−1
d(cos θ)

∫ 2π

0
dφ|∇Y m

` |2 ≈ ΛQk.

The approximation assumes ` À k, which is
not valid for low degree modes. However the
terms involving this factor are significant for such
modes only in the core, which we assume is un-
perturbed. Thus, for ∆I we have approximately

∆I = Qk

∫
drr4ρ′kE .

Again, we make use of eq. [24] and integrate by
parts, and with eqs. [11] and [12], to obtain ap-
proximately

∆I = 2Qk

∫
dr

r3

g
(Vk −Hk)(yλ + 2Λzy). (47)

In calculating ∆Dp, we first note that the [...]φ
term in eq. [13] does not contribute, which follows
from the assumed axial symmetry of the pertur-
bation. The contribution from the [...]θ term is

9



nonzero, but it is small, as may be justified as
follows. Integrating by parts over θ, one gets the
k(k + 1)Qk factor from the angular integral and
the whole contribution from this term is of the
same order as the one neglected above. Thus, we
have

∆Dp = Qk

∫
drr2

[
Γ

(
p′k(1 + Γp) +

ρ′k
pΓρ

ρ

)
λ2 + p′k2Λ(E + zλ)

]
.

The quantity ρ′k is again eliminated by integra-
tion by parts. The use is also made of eqs. [11]
and [12]. The result is

∆Dp = −Qk

∫
drr2{Hk[Γ(1 + Γp)λ2 +

2Λ(E + zλ)] + (Hk − Vk)ψ},

where

ψ ≡ Γρ

[(
2− Γ

d ln c2

d ln p

)
λ2 + 2λ

(
Λz − ω2r

g
y

)]

−Γ
dΓρ

d ln p
λ2.

Combining this with eq. [47] in eq. [17] (∆Dg is
negligible), we obtain

∆Ds,k = Qk

∫
drr2(DV

s Vk +DH
s Hk), (48)

where we denoted

DV
s = −2ζ + ψ, (49)

ζ =
ω2r

g
(yλ + 2Λzy),

and

DH
s = 2ζ −ψ− Γ(1 + Γp)λ2 − 2Λ(E + zλ). (50)

6. Frequency change to due varying tur-
bulent pressure

For evaluating Dv according to eq. [15], we use
the random velocity field representation given in

eq. [32]. We note that

ρ|(v ·∇)ξ|2 = ρ
∑

k

(
T V

k AV +
1
2
T H

k AH
)

P2k,

(51)
where

AV ≈
(

r
dy

dr

)2

|Y m
` |2 +

(
r
dz

dr

)2

|∇Y m
` |2

and

AH ≈ y2|∇Y m
` |2 + z2[|(Y m

` );θ;θ|2
+2|(Y m

` );θ;φ|2 + |(Y m
` );φ;φ|2].

The radial derivatives in AV are eliminated with
the help of eqs. [11] and [12]. The angular inte-
grals are evaluated by parts keeping only deriva-
tives of the spherical harmonics. This approxi-
mation justifies, in particular, the replacement

2|(Y m
` );θ;φ|2 → 2<[(Y m

` );θ;θ(Y m
` );φ;φ].

In this way, we get the contribution to Dv from
the P2k component of the turbulent pressure,

Dv,k = −Qk

∫
drr2ρ

[
T V

k (λ2 + 2Λzλ + ΛE)

+T H
k

Λ
2
E

]
(52)

The contribution to Ds,0 from the induced change
in the gas pressure at constant temperature and
radius is given by

∆Ds =
∫

drr2ρDisothT V
0 ,

which follows from eqs. [33] and [40]. Using these
two expressions in eq. [18], we get

(∆ω)v,isoth =
1

2ωI

∫
drr2ρ(RV

v,isothT V
0 +RH

v,0T H
0 ),

(53)
where

RV
v,0 = Disoth − (λ2 + 2Λzλ + ΛE)

and
RH

v,0 = −Λ
2
E .
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The expression for Disoth is given in eq. [41]. The
complete expressions for the R’s are given in the
Appendix (eqs. [A1] and [A2]). Here, we pro-
vide only the asymptotic forms of the R’s for
p-modes where `|z/y| ¿ 1, which is valid suffi-
ciently above the lower turning point, as well as,
being the form appropriate for the f-modes. Our
approximation for p-modes is the same as that
used by GMWK, and that made for f-modes is
the same as made by DGS.

For the p-modes, the leading terms are those
proportional to λ2. If we keep only these terms,
and, in addition, if we ignore the derivatives of
Γ, we find

RV
v,isoth ≈ −

(
1 + Γ +

Γ
χρ

)
λ2, RH

v,0 ≈ 0.

(54)
For the f-modes, we have (e.g. Appendix in DGS)
y ∼ `z and λ ¿ `z which implies

RV
v,isoth ≈ −2ΛE , RH

v,0 = −Λ
2
E . (55)

Thus, in both limiting cases a decrease in the tur-
bulent pressure results in a frequency increase. In
fact, this property is valid for all observed solar
oscillations. With the help of eqs. [44] and [45],
we may easily obtain expressions for the adia-
batic (ad) instead of the isothermal kernels.

For k > 0, we get from eqs. [48] and [33]

∆Ds,k = Qk

∫
drr2ρ(DV

s T V
k +

1
2
DH

s T H
k ).

This together with the eq. [52] used in eq. [18]
gives

(∆ω)v,k =
Qk

2Iω

∫
drr2ρ(RV

v T V
k +RH

v T H
k ), (56)

where

RV
v,k = DV

s − (λ2 + 2Λzλ + ΛE)

and
RH

v,k =
1
2
(DH

s − ΛE).

The general expressions for DV
s and DH

s are given
in eqs. [49] and [50], respectively. The com-
plete expressions for the R’s are in the Appendix
(eqs. [A5] and [A6]). Note that RV

v,k and RH
v,k are

the same for all k > 0.
The asymptotic expressions for p-modes are

RV
v,k ≈ −2ζ − λ2, RH

v,k ≈ ζ − Γ
2

λ2, (57)

where

ζ ≈ ω2r

g
yλ

is the highest order term in the ω → ∞ asymp-
totics. However, for solar p-modes in the outer
evanescent zone, ζ is comparable to λ2, and be-
low it changes from + to - and therefore we keep
terms involving both quantities.

For the f-modes, we now have

RV
v,k ≈ −3ΛE , RH

v,k ≈ −1
2
ΛE . (58)

Once we have the R kernels, we can evaluate the
γ’s introduced in eqs. [3] and [4] for a specified
turbulent velocity field. We give here an expres-
sion, which is convenient in application to solar
data

γv,k =
∫

d

(
dphot

1 Mm

) [
KV

v,k

(
δT V

k

1 km2s−2

)

+KH
v,k

(
δT H

k

1 km2s−2

)]
µ Hz, (59)

where dphot is the depth beneath the photo-
sphere,

KV,H
v,k = 3.76× 10−8 1 mHz

ν
x2ρ̃RV,H

v,k .

The normalization of the eigenfunctions in R’s
must be the same as in Ĩ used in the definition
of γ. In the Appendix, we give exact expres-
sions for RV,H

v,k . In Fig.1, we show examples of
the Kv kernels that are important for evaluating
the p-mode γ’s due to the perturbation of the
turbulent pressure. Although the general trend is
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Fig. 1.— Kernels for calculating γv,k according
to eq. [59] at three selected frequencies plotted
as functions of the depth in outer part of the
standard solar models. The three kernels are `-
independent for p-modes in this part of the sun.
The KH

v,0 kernel is ∝ Λ and is much smaller.

consistent with the asymptotic formulae (eqs. [54]
and [57]), there are visible small-scale structures
arising from the derivatives of Γ, which we have
ignored in these two asymptotic formulae. The
kernels for multiplying the vertical component,
have significantly larger absolute values and are
negative. Thus, we expect a rise of the γ’s with
a decrease of turbulent velocities. Since the in-
creasing magnetic activity is expected to inhibit
turbulence, the trend of the calculated effect in
γ is consistent with observations.

With the help of Figure 2, we may roughly
estimate the required change in the mean turbu-
lent velocity needed to account for the measured
γ’s, under the assumption that this change is the
only source of the γ’s. From numerical simula-
tions, we know (e.g. Abbett et al., 1997) that
velocity fluctuations at the level of 1 km/s per-
sist over the whole layer shown in figure, with a
maximum of nearly 3 km/s at dphot ≈ 0.1. The
frequency averaged value of γ0 ≈ 0.3µHz (DGS)
requires a fraction (0.2 - 0.5) of one percent de-
crease in the radial component of velocity fluc-
tuations. The largest γk (k = 1 and 3) require
about one percent decrease. Such small changes
would not be easy to detect.

Fig. 2 shows that the kernels for the f-modes
are very different from those for the p-modes. In
this case, the asymptotic expressions for R are
quite accurate. The kernels scale as Λ/ν ∝ `1.5.
All the kernels have similar shapes, and they all
negative. The value of the f-mode kernels are
comparable to those of the p-modes. The maxi-
mum measured values of γ0 for f-modes are about
twice that for p-modes, but the errors are large.
The uncertainty for k > 0 is even higher.

More detailed analyses of the γk(ν) depen-
dence reflecting the kernels frequency depen-
dence seen in Figs. 1 and 2 are needed to say
more about the nature of the required change in
the turbulent velocity. However, at this stage
we may already conclude that this change must
be regarded as important, perhaps the domi-
nant contributor to solar p-mode and f-mode fre-
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quency changes over the activity cycle. The sign
of the observed changes agrees with the expected
inhibiting effect of the field on convection.

Fig. 2.— Kernels for calculating γv,k for f-modes
at three selected `-values.

7. Frequency change due to varying small-
scale, near-surface magnetic field

With the random field being described by
a single P2k-component (see eq. [34]), the three
terms in the integrand of eq. [16] are transformed
as follows

|(B ·∇)ξ|2 →[
MV

k (λ2 + 2Λzλ + ΛE) +MH
k

Λ
2
E

]
|Y m

` |2,

−2divξ∗B · (B ·∇)ξ →
−[2MV

k λ(λ + Λz)−MH
k Λzλ]|Y m

` |2,
and

1
2
|B|2(Ξ + |divξ|2) →

(MV
k +MH

k )[λ2 + Λ(zλ + E)]|Y m
` |2.

The transformations use integration by parts
over the surface, our approximations regarding
the eigenfunctions, and the angular dependence
of the M’s. Note that the first term is fully anal-
ogous to the integrand in Dv that was considered
in the previous section.

With the above expression, we get from eq. [16]

DM,k =
Qk

4π

∫
drr2{δMV

k Λ(zλ + 2E) +

δMH
k [λ2 + Λ(2zλ + 1.5E)]}.

For the spherically symmetric part of ∆Ds, we
use eq. [40], ignoring here again the temperature
and radius changes. This combined with eq. [35],
yields

∆Disoth =
1
8π

∫
drr2Dad(MH

0 −M′V ). (60)

Using last two expressions in eq. [18], we get

(∆ω)M,isoth =
1

16πωI

∫
drr2(RV

M,isothMV
0

+RV
M,isothMH

0 ), (61)

where

RV
M,isoth = 2Λ(zλ + 2E)−Disoth

and

RH
M,isoth = 2λ2 + Λ(4zλ + 3E) +Disoth,

with Ds,isoth is given in eq. [41]. The complete
expressions for the R’s are in the Appendix
(eqs. [A3] and [A4]). The asymptotic expressions
for the p-modes are

RV
M,isoth ≈

(
Γ +

Γ
χρ

)
λ2

and

RH
M,isoth ≈

(
2− Γ− Γ

χρ

)
λ2. (62)

The adiabatic kernels, equivalent to those found
by GMWK, are obtained by replacing χρ with
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Γ−1. In both cases the equations imply that
an increase in the vertical component leads to
a decrease in the frequencies, while the oppo-
site is true for the horizontal component. The
sign of frequency shift due to the horizontal field
is opposite to what one might have naively ex-
pected because the dominant effect of such field
arises through the perturbation of the equilib-
rium structure (the Ds term) and not by the di-
rect effect of the field on oscillations (the DM

term). The former term is negative because the
horizontal field causes a local expansion, hence
an increase of the sound propagation time. The
vertical field has an opposite effect. An isotropic
(MH

0 = 2MV
0 ) field increase implies a net fre-

quency increase but the required increase to ac-
count for the observed frequency changes is large.

For the f-modes, the Ds,isoth may be neglected
and we have

RV
M,isoth ≈ RH

M,isoth ≈
4
3
ΛE . (63)

Thus, an increase of either component of the
magnetic field implies a frequency increase for
f-modes.

For k > 0 we have from eqs. [48] and [35]

∆Ds,k =
Qk

8π

∫
drr2[(DH

s −DV
s )MV

k +DV
s MH

k )]

and

(∆ω)M,k =
Qk

16πωI

∫
drr2(RV

MMV
k +RH

MMH
k ),

(64)
where

RV
M,k = DH

s −DV
s + 2Λ(zλ + 2E)

and

RH
M,k = DV

s + 2λ2 + Λ(4zλ + 3E).

Expressions for DV
s and DH

s are given in eqs. [49]
and [50], respectively. The complete expressions
for the R’s are in the Appendix (eqs. [A7] and
[A8]). Again kernels RM,k are the same for all

k > 0. The The asymptotic expressions for p-
modes are

RV
M,k ≈ 4ζ − Γλ2, RH

M,k ≈ −2ζ + 2λ2. (65)

For the f-modes, we now have

RV
M,k ≈ 6ΛE , RH

M,k ≈ ΛE . (66)

Now we have for γ’s

γM,k =
∫

d

(
dphot

1 Mm

) 
KV

M,k

(
δMV

k

1 kG

)2

+

KH
M,k

(
δMH

k

1 kG

)2

 µ Hz, (67)

where

KV,H
M,k = 1.06× 10−13 1 mHz

ν
x2RV,H

M,k.

In Figs. 3 and 4, we show kernels for calculating

Fig. 3.— Kernels for calculating centroid fre-
quency shifts due to a small-scale magnetic for
p-modes at the three selected frequencies.

γM according to eq.[67]. Note the strong sen-
sitivity to the frequency, which emphasizes the
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Fig. 4.— The same as Fig.3 but for calculating
the even-a part of the frequency splitting

probing power of the γ(ν) dependence. Further,
note that the kernels imply that an increase in the
radial field in outer layers will lead to an increase
in the mean frequency, while that of the horizon-
tal field has the opposite effect. The growth of
the vertical field also leads to an increase of γ’s
at k > 0, but the effect of the horizontal field
growth is impossible to predict as it depends a
lot on the depth where it takes place. Also in
the case of magnetic fields the kernels for f-modes
differ significantly from those for p-modes as we
may see comparing Fig. 5 with those in Figs. 3
and 4. For f-modes, the effect of the horizontal
components of the field is similar to the vertical
ones but smaller.

Again, we may use the plots shown in these fig-
ures to assess the required magnetic field changes
needed to account for the measured γ’s. Let us
first consider γ0. For p-modes, the minimum re-
quirement for the field increase is obtained, if we
assume that only radial component increases and
it is ∼ 100 G (DGS). The number rises to above
200 G if we assume an isotropic field increase

Fig. 5.— Kernels for calculating the centroid
shifts (upper panel) and splittings due to ver-
tical components of the field for f-mode modes
at three selected degrees. The kernels due to the
horizontal components have similar shapes but
smaller (factor ≈ 3 at k = 0 and ≈ 6 at k > 0).

(GMWK, DGS). This latter value is unaccept-
ably high. Also, there is a higher requirement
to account for f-mode γ0’s. Though the obser-
vational accuracy is poorer than in case of p-
modes, this may be regarded as a piece of ev-
idence against the direct effect of a changing
magnetic field as the sole cause of the frequency
changes. Also accounting for the even-a coeffi-
cients sets more stringent requirements on the
near-surface magnetic field, which may be diffi-
cult to reconcile with the measurements.

8. Temperature and radius variation

GMWK were first to considered the role of
temperature variations in the p-mode frequency
changes. They concluded that the temperature
decrease at constant pressure results in frequency
decrease because the effect of local expansion of
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However, they excluded this as a primary source
of the measured changes. Here we reconsider the
effect using our formulation presented in Section
5.1. With eqs. [19],[18], [40], and [42] we obtain
the following expression for the temperature con-
tribution to γ0.

γT,0 =
∫

d

(
dphot

1 Mm

)
KT

δT

T
µHz, (68)

where

KT = −0.72
ν

1 mHz

(
c

ωr

)2

x4ρ̃
χT

χρ
RT

and
RT = (1 + Γρ)λ2 + 2Λzλ.

For p-modes the first term is dominant in RT .

Fig. 6.— Kernels for calculating the frequency
shifts due to temperature increase for p-modes
at the selected frequencies (upper panel) and
f-mode modes at the selected degrees (lower
panel).

Except for our taking into account the derivative
of Γ, it is the same as in GMWK. For f-modes
the second term is much greater but the entire

kernels are much smaller than for p-modes, as
we may see in Fig. 6. Thus, we will consider
the effect of temperature only for the p-modes.
With the plots in the upper panel, we may esti-
mate that the fractional temperature increase in
the outer layers at a 10−4 level implies decrease
of γ0 at a 10−1µHz level, which is significant.
The question arises whether such temperature
changes during the solar cycle are feasible.

Temperature variation correlated with mag-
netic variations are expected. However even the
sign of it is a matter of debate. Gray & Liv-
ingston (1997) put forward evidence that there
an increase of Teff between the activity minimum
and maximum by some 1.5K, that is δTeff/Teff ≈
2.6 × 10−4, which would account for the ob-
served variation in the solar constant. Since
the optical depth increases with temperature in-
creases, δT at dphot = 0 is somewhat greater than
δTeff . An estimate using the Eddington approx-
imation yields δT (dphot) = 1.4δTeff . The result
of Gray & Livingston is not generally accepted.
Spruit(1991) argues that the dominant effect of
the magnetic field on temperature is through in-
hibition of convection and hence it implies cooler
layer outer layers at high activity. If this indeed
the case, then the induced temperature variation
contribute to frequency increase. Spruit (1991)
explains the irradiance increase correlated with
the activity as a result of an increased correga-
tion of the photosphere.

In a crude manner, the expected temperature
change may be linked to the change in the tur-
bulent velocity. In Section 6, we found that
(2−5)×10−3 change in turbulent velocity suffices
to explain the maximum value of γ0 ≈ 0.3µHz.
Our aim is to estimate the values of δT/T in the
subphotospheric layer extending down to (say) 1
Mm associated with such a change in the veloc-
ity. To this aim, we rely on the mixing-length
approximation (MLT) and we mimic the inhibit-
ing effect of the field by varying the MLT pa-
rameter α. While perturbing α, we keep both R
and entropy constant in the adiabatic part of the
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convective zone. Adopting δv/v = −3×10−3, we
find δT/T = −1×10−3,−2×10−4, and−1×10−4

at dphot = 0, 0.5, and 1 Mm, respectively. The
implied 4 K decrease of Tphot between solar min-
imum and maximum seems unacceptably large.
This, however, should not be regarded as a case
against changes in turbulent velocities being the
primary source of the frequency changes because
our treatment of energy transport was very crude
indeed. Rather, we want to emphasize here that
temperature changes in the subphotospheric lay-
ers must be considered as significant contributor
to the observed frequency changes over the solar
cycle.

The aspherical part of the temperature per-
turbation is fixed by the condition of mechanical
equilibrium. Eq. [28] expresses δkT in terms of
the expansion coefficients Vk and Hk, which in
turn are linked to the expansion coefficients for
turbulent pressure (eq. [33]) and magnetic field
(eq. [35]). We may see that any inference on tem-
perature depends on the derivative of the per-
turbing force, and thus requires a detailed anal-
ysis of the γ(ν) dependence. Currently available
data are probably not accurate enough for this.

In contrast to the effect temperature, which
may only be important for p-modes, the effect of
radius perturbation is likely to play a role only in
f-mode frequency changes. Considering in eq. [40]
only the effect of radius perturbation and adopt-
ing the approximation 2Λyz ≈ `E , which is valid
for f-modes, we get from eq. [18]

(
δν

ν

)

r,0
= − 3`

2ω2I

∫
dI

g

r

δr

r
.

This expression was used by DGS, who argued
that the part of the frequency increase which is
∝ ν may be explained by the part of δr which
is common to all modes is the f-mode set. Their
set contained modes with `’s from 137 to 300.
The common part must have originated below
the outer part of the sun sampled by all these
modes, that is below radius r = 0.988R¯. They
argued that its likely cause is an increase in the

radial component of the magnetic field by few
kG. It is an ironic that the best evidence for
deep seated magnetic field changes may come
from modes which do not directly probe the re-
gion where the field is located. Unfortunately,
what we get with these modes is only an integral
constraint on the field. Of course it would be ad-
vantageous to have a direct probe for the deep
seated field.

9. Frequency perturbation due the hori-
zontal field in deep layers

It has been argued (see, e.g., D’Silva & Howard
1993) that a horizontal field of B ∼ 105 G is
present in the region near the base of the convec-
tive envelope. Seismic evidence for the presence
of such a field is still controversial.

First, we consider a large-scale toroidal field
of the form given in eq. [36], and truncated at
j = 2. The consecutive terms in DM (see eq. [16])
are calculated under the same approximation as
used in §3. The three integrands become

|(B ·∇)ξ|2 = Wm2(y2|Y m
` |2 + z2|∇HY m

` |2),

−2divξ∗B · (B ·∇)ξ = −2Wm2|Y m
` |2zλ,

and

1
2
|B|2(Ξ + |divξ|2) = W (1− µ2)|Y m

` |2[λ2 +

Λ(E + zλ)],

where we denoted

W ≡ 3
4
B1

t,2 +
15
4

B2
t,2µ

2 +
3
2

√
5B1

t,2B
2
t,2µ.

Note that the last term in W cancels out upon in-
tegration. Calculating the surface integrals first
two terms in DM , we rely on the following recur-
sion relation (DG 91).

qk =
2k − 1

k(4Λ + 1− 4k2)
{qk−1[2Λ− (2k − 1)2]

−2m2 + qk−2(2k − 3)(k − 1)},
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where

qk =
∫ 1

−1
dµ

∫ 2π

0
dφµ2k|Y m

` |2.

With this relation, assuming Λ À 1 and using
explicit expressions for P2k the surface integral
becomes

m2
∫ 1

−1
dµ

∫ 2π

0
dφµ2|Y m

` |2 ≈

Λ
(

1
15
− 2

21
Q1 − 32

105
Q2

)
.

We could assume Λ À 1 because for low degree
modes the third terms dominates. The surface
integral in this term is easily expressible in terms
of Q1 and Q2. Combining all the three terms in
eq. [16], we obtain

DM =
1
4π

∫
drr2

{
B2

t,1

[
1
4
(2λ2 + 3ΛE)−

Q1

2
(λ2 + 3ΛE − 3Λzλ)

]
+ B2

t,2

[
1
4
(2λ2 + 3ΛE) +

5Q1

14
(λ2 + 3Λzλ)

−2Q2

7
(3λ2 + 7ΛE − 5Λzλ)

]}

We now proceed to calculate the contribu-
tion to the centroid frequency changes due to
the induced adiabatic pressure change. The adi-
abatic approximation is now well-justified on the
grounds that the layer where the field is expected
is located deep enough. Setting δs = 0 in eq. [44]
and using eq. [37], to express V0, we obtain

∆Ds,0 =
1

16π

∫
drr2Dad(B2

t,1 + B2
t,2).

Eq. [45] gives an explicit form of Ds,ad in terms
of the eigenfunctions.

The corresponding contribution to the split-
tings is obtained from inserting eqs. [38] and [39]
into eq. [48] yields

Ds,k =
Qk

8π

∫
drr2

{
B2

t,1

[
− 1

2
(DV

s + 2DH
s )δk1

]

Fig. 7.— Kernels for calculating the values of
γt,0 according to eq. [72], and arising from dipo-
lar (j = 1) and quadrupolar (j = 2) toroidal
magnetic fields, for four ` = 30 modes of indi-
cated orders n in the zone near the bottom of
the convective envelope (x = r/R¯ = 0.71).

+B2
t,2

[
1
14

(5DV
s − 10DH

s )δk1

−3
7
(2DV

s + 3DH
s )δk2

]}
.

Combining all three D integrals into a single
expression for the frequency shift due the jth-
component of the toroidal field, we have

(∆ω)t,j =
1

8πIω

j∑

k=0

Qk

∫
drr2B2

t,jRt,kj . (69)

The jth component generates all the γ’s from k =
0 up to j. From the D’s calculated above, we get
for the following expressions for the R’s at j = 1
and 2

Rt,01 = Rt,02 =
1
2
Dad + λ2 +

3
2
ΛE ,

Rt,11 = −1
2
[DV

s + 2DH
s + 2λ2 + 6Λ(E − zλ)],

Rt,12 =
5
14

(DV
s − 2DH

s + 2λ2 + 6Λzλ)

Rt,22 = −1
7
[6DV

s + 9DH
s + 12λ2 + 4Λ(7E − 5zλ)]

The quantities Dad, DV
s , and DH

s , are given
in eqs. [45], [49] and [50], respectively. In these
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equations, one may make use of yet another
approximation that is valid for p-modes in the
acoustic propagation zone and beneath. For so-
lar p-modes (the f-modes are irrelevant here), we
have λ ≈ −Ληz, where

η ≡
(

ω

L`

)2

=
1
Λ

(
ωr

c

)2

is the square of the ratio of the mode to Lamb
frequencies. At the inner turning point, we have
η = 1. With the above expression for λ, we will
obtain a more explicit form of theR’s. The prod-
ucts of the eigenfunctions occurring in the R’s
may now be expressed as follows

zλ = −ηEH , λ2 = Λη2EH , EH ≡ Λz2, (70)

ζ =
Λω2r

g
yz(2− η) =

c2

gr
Λ2η(2− η)yz. (71)

Finally, we assume the ideal gas law, which is a
fully adequate approximation in the region con-
sidered, to obtain

Rt,01 = Rt,02 ≈ Λ

[
11
12
E −

(
η2

3
− 2η +

3
5

)
EH

]

Rt,11 ≈ −ζ − Λ
[
E + η

(
5− 2η

3

)
EH

]

Rt,12 ≈ −15
7

ζ +
5
7
Λ

[
2E + η

(
8
3
η − 5

)
EH

]

Rt,22 ≈ −6ζ

7
− Λ

7
[10E − η(3η + 38)EH ]

We now rewrite eq. [69] in the following conve-
nient form, specialized for the sun

γt,k =
∑

j≥k

∫ 1

0
dxKt,kj

(
Bt,j

1 MG

)2

µHz, (72)

with x = r/R¯

Kt,kj = 1.48× 10−4 1 mHz
ν

x2Rt,k.

Fig. 8.— The same as Fig.7 but for the even-a
splittings (k > 0).

The modes that are most sensitive to the field
in the vicinity of the base of the convective enve-
lope are those of moderate degree with turning
points located there. This is illustrated in Figs.
7 and 8, where we show the kernels Kt,k(x) for
three ` = 30 modes. The modes have frequencies
in the 1.95 to 2.63 mHz range. The lower turn-
ing points range, accordingly, from x = 0.742
to 0.654. The n=6 mode, which has its inner
turning point at x = 0.721 that is above the
base of the convective zone, probes the field not
only within the convective envelope, but also the
region immediately beneath, which is below its
inner turning point! This latter fact is in con-
trast to the ray approximation in which this
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mode would know nothing about the region be-
neath its inner turning point. The turning of the
n = 8 mode is at x = 0.68 and this mode is
the best probe of the bulk of the overshooting
zone that extends down to about 0.70. Similar
results would apply for different `-values, after an
appropriate re-scaling of the frequencies so that
the η ∝ `/ν ratio is preserved. We see that the
toroidal field increase leads to a corresponding
increase in γ0 and that the effect is mostly of the
opposite sign for k > 0.

If a toroidal field of 1 MG would prevail in the
layer between x = 0.68 and 0.74, that is over a
distance comparable to one pressure scale height,
which is about 0.08, then the value of γ0 would
reach up to 0.8µHz, that of γ1 would be nega-
tive, reaching to -2.6, and that of γ2 would also
be negative reaching −2.9µHz. Clearly, such val-
ues are very significant and the field would be
easily detectable. Detection of the signal corre-
sponding to a putative 0.1 MG field is problem-
atic at present day accuracy. The best chance is
to see it is in the even-a coefficients, if indeed the
field were dominated by the low-j polynomials.
If the 1 MG field were present only within the
overshoot zone, extending from (say) x=0.65 to
the base of the convective zone, then the corre-
sponding extreme values would be -0.31, -0.95,
and -1.1 µHz. Thus, somewhat stronger than 0.1
MG fields are required for detection. However,
stronger fields may be anticipated in the over-
shoot layer.

Chou and Serebryanskyi (2002) found evi-
dence for a 0.4-0.7 MG field at the base of the
convective envelope from time-distance seismol-
ogy. Such a field, if it persists over a distance
to comparable to that assumed by us, should be
detectable by means of global seismology. How-
ever, the effort made so far did not result in the
detection of a significant signal (Basu, 2002).

It is possible that the magnetic field in the
deep part of the convection envelope, and in the
overshoot zone forms azimuthal ropes, and thus
is better represented as a small-scale field with

its mean value being a slowly varying function of
latitude. In this case, the frequency perturbation
is described by the adiabatic version of eqs. [61],
at k = 0, and by [64], at k > 0, with only the
horizontal components included. For the γ’s, we
use an expression that is similar to that given in
eq. [67]

γH
k =

∫ 1

0
dxKH

k

(
Bt,j

1 MG

)2

µHz, (73)

with x = r/R¯

KH
k = 1.48× 10−4 1 mHz

ν
x2RH

M,k.

With the approximation for the eigenfunctions,
which is valid for p-modes in the zone considered
as given in Eqs. [70] and [71], we have

RH
M,0 ≈ Λ

[
11
5
E −

(
2
3
η2 +

6
5

)
EH

]

RH
M,k ≈ Λ

[
3E + 2η(η − 2)EH

]
− 2ζ.

Both kernels change sign in the region of inter-
est. In Fig. 6, we show examples of the kernels
for the same modes and in the same layer, as
in Fig. 5. Differences between the figures are
apparent. Note in particular, the sign changes
within the layer. With a 1MG field in the layer,
we get γ0 of about 0.8 µHz for the n = 8 and
10 modes. So that a 0.4-0.7 MG field should be
easily detectable in the frequency shifts. The ex-
pected signal in the even-a’s would be somewhat
weaker, but should also be detectable.

10. Conclusions

We surveyed various effects that may explain
the increase of the mean frequencies of solar os-
cillations and the changes in the fine structure
of the multiplets correlated with the rise of ac-
tivity. Beyond any doubt is the fact that the
seismic changes reflect temporal and longitudi-
nal evolution of the sun’s activity and that the
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Fig. 9.— Kernels for calculating the γ’s arising
from small-scale horizontal magnetic field near
the base of the solar convective zone.

main part of these changes has its source close to
photosphere, perhaps within 1 to 1.5 Mm. The
question that remains to be answered is how the
changes are related to magnetic field variations
and associated variation of the velocity field and
the temperature in the atmosphere, and in the
subphotospheric layers. The answer is important
because only after we know it, we will be able to
make a full use of seismic data as a probe of the
large-scale variability of the sun over its activity
cycle.

Another open question is whether current fre-
quency data reveal changes in the deep inte-
rior. Assessing the intensity of the magnetic
field in the lower convective envelope and in the
outer radiative interior, just beneath, would be of
great importance for understanding the physics
of magnetic activity.

With these questions in mind, we developed
integral formulae expressing shifts in oscillation
frequencies in terms of changes in magnetic and

velocity fields and temperature. We made certain
approximations, which are well-justified both for
solar p- and f-modes. Small scale-fields were rep-
resented by the square-averaged values of vertical
and horizontal components. These values were
expressed in terms of the Legendre-polynomial
series. We showed the coefficients at P2k in these
series contribute only to a2k coefficients of the
frequency splitting. The connecting expressions
were given in the form of integrals over the depth
with explicit expressions for the kernels. We
also provided kernels linking the mean frequency
shifts and the a2k coefficients to a low-order ex-
pansion of a putative large-scale toroidal field
near the base of the convective envelope.

Plots of the kernels allowed us to make a sim-
ple assessment of the changes needed to explain
the measured shifts. We found that the increase
of the mean frequencies and the changes in a2k-
coefficients are most easily explained in terms of
a decrease of turbulent velocities associated with
the increase of the magnetic field with growing
activity. The required decrease in the turbu-
lent velocity needed to explain the data consti-
tutes only a fraction of a percent. A decrease
in turbulent velocity is expected to result in a
temperature decrease in outer layers of the sun.
Our estimate showed that the resulting temper-
ature decrease should give a significant contribu-
tion to the mean frequency increase, which re-
duces requirement on the size of the decrease of
the turbulent velocity. Accounting for the seis-
mic changes by the sole direct effect magnetic
field is more difficult. An increase of the surface-
averaged r.m.s. value of the vertical field com-
ponent by about 0.1 kG between the minimum
and maximum of the activity would be needed
to account for the mean frequency increase of
the p-modes. The measured changes in the even
a coefficient for p-mode require about twice as
large field increase at most active latitudes. Also
a larger field seems to be needed to account for
the systematic increase of the f-mode frequencies.

Considering the influence of the field near the
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base of the convective envelope, we found that
there is a chance for detecting such a field directly
from the frequency data. Evidence, from time-
distance seismology, for the presence there of the
(0.4 − 0.7) MG field was recently put forward
by Chou & Serebryanskyi (2002). We showed
that such a field, if extends over a layer of thick-
ness comparable with one pressure distance scale,
should be detectable also by means of global seis-
mology.
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APPENDIX
KERNELS FOR THE γ’s

Here we summarize the expressions for the
kernels for evaluating the γ’s due to small-scale
velocity and magnetic fields. We begin by recall-
ing the definition of the radial eigenfunctions:

ξ = r[y(r)er + z(r)∇H ]Y m
` (θ, φ) exp(−iωt).

We also define

λ = y
gr

c2
− z

ω2r2

c2

and
E = y2 + Λz2.

The kernels for centroid shifts (γ0) due to tur-
bulent velocity are

RV
v,isoth = Disoth − (λ2 + 2Λzλ + ΛE) (A1)

RH
v,0 = −Λ

2
E . (A2)

and those due to a small-scale magnetic fields are

RV
M,isoth = 2Λ(zλ + 2E)−Disoth (A3)

RH
M,isoth = 2λ2 + Λ(4zλ + 3E) +Disoth. (A4)

where

Disoth = −Γ

[(
1 + Γp +

1 + Γρ

χρ

)
λ2 +

2Λzλ

χρ

]

The kernels for the even-a coefficients (γk, k >
0) due to turbulent velocity are

RV
v,k = −(2ζ − ψ + λ2 + 2Λzλ + ΛE), (A5)

RH
v,k = ζ−1

2
[ψ−Γ(1+Γp)λ2+2Λzλ+3ΛE ]. (A6)

and those due small-scale magnetic fields

RV
M,k = 4ζ − 2ψ − Γ(1 + Γp)λ2 + 2ΛE , (A7)

RH
M,k = −2ζ + ψ + 2λ2, (A8)

where

ζ =
ω2r

g
(yλ + 2Λzy)

and

ψ ≡ Γρ

[(
2− Γ

d ln c2

d ln p

)
λ2 + 2λ

(
Λz − ω2r

g
y

)]

−Γ
dΓρ

d ln p
λ2.
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