USER’S GUIDE TO:

€ ANDOR'SDK

www.andor.com © Andor plc 2009

Software Version 2.88

http://www.andor.com/

ANDOR"

TABLE OF CONTENTS

SECTION 1 - INTRODUCTION
TECHNICAL SUPPORT

SOFTWARE IMPROVEMENTS AND ADDITIONAL FEATURES

SECTION 2 - SOFTWARE INSTALLATIONS

PC requirements

SDK WINDOWS INSTALLATION
Windows Troubleshooting

SDK LINUX INSTALLATION

LABVIEW INSTALLATION
Linux Troubleshooting

SECTION 3 - READOUT MODES

INTRODUCTION
Full Vertical Binning
Single-Track
Multi-Track
Random-Track
Image
Cropped

SECTION 4 - ACQUISITION MODES

ACQUISITION MODE TYPES
Single Scan
Accumulate
Kinetic Series
Run Till Abort
Fast Kinetics
Frame Transfer

SECTION 5 - TRIGGERING

TRIGGER MODES
Internal
External
External Start
External Exposure
External FVB EM
Software

SECTION 6 - SHIFT SPEEDS

Page 2

PAGE

10
11

11

20
20

20
22

23

23
24

25

25
26
26
27
28
29
30

31

31
32
33
34
36
39
40

46

46
47
48
50
51
53
54

55

TABLE OF CONTENTS

ANDOR"

TABLE OF CONTENTS

SECTION 7 - SHUTTER CONTROL

SHUTTER MODES
Fully Auto
Hold Open
Hold Closed

SHUTTER TYPE

SHUTTER TRANSFER TIME

SECTION 8 - TEMPERATURE CONTROL

SECTION 9 - SPECIAL GUIDES
CONTROLLING MULTIPLE CAMERAS
USING MULTIPLE CAMERA FUNCTIONS

DATA RETRIEVAL METHODS
How to determine when new data is available
Retrieving Image Data

DETERMINING CAMERA CAPABILITIES
Retrieving capabilities from the camera
Other Capabilities

iCam

SECTION 10 - EXAMPLES
INTRODUCTION

RUNNING THE EXAMPLES
C
LabVIEW
Visual Basic

FLOW CHART OF THE FUNCTION CALLS NEEDED TO CONTROL ANDOR CAMERA

SECTION 11 - FUNCTIONS
AbortAcquisition
CancelWait
CoolerOFF
CoolerON
Demosaiclmage
EnableKeepCleans
FreelnternalMemory
GetAcquiredData
GetAcquiredDatal6
GetAcquiredFloatData
GetAcquisitionProgress
GetAcquisitionTimings
GetAdjustedRingExposureTimes
GetAlIDMAData

Page 3

56

56
56
56
56

57

58

60

61
61
62

64
64
66

67
67
71

72

73
73

74
74
74
74

75

80
80
80
81
82
83
84
84
85
85
86
86
87
87
88

TABLE OF CONTENTS

ANDOR"

TABLE OF CONTENTS

GetAmpDesc
GetAmpMaxSpeed
GetAvailableCameras
GetBackground
GetBitDepth
GetCameraEventStatus
GetCameraHandle
GetCameralnformation
GetCameraSerialNumber
GetCapabilities
GetControllerCardModel
GetCurrentCamera
GetDDGPulse
GetDDGIOCFrequency
GetDDGIOCNumber
GetDDGIOCPulses
GetDetector
GetDICameralnfo
GetDualExposureTimes
GetEMCCDGain
GetEMGainRange

GetFastestRecommendedVSSpeed

GetFIFOUsage
GetFilterMode
GetFKExposureTime
GetFKVShiftSpeed
GetFKVShiftSpeedF
GetHardwareVersion
GetHeadModel
GetHorizontalSpeed
GetHSSpeed

GetHVflag

GetlD

GetlmageFlip
GetlmageRotate
Getlmages
Getlmages16
GetlmagesPerDMA
GetlRQ
GetKeepCleanTime
GetMaximumBinning
GetMaximumExposure
GetMCPGain
GetMCPGainRange
GetMCPVoltage
GetMetaDatalnfo
GetMinimumlmagelength
GetMostRecentColorimagel6
GetMostRecentimage
GetMostRecentimagel6
GetMSTimingsData
GetMSTimingsEnabled
GetNewData
GetNewDatal6
GetNewData8
GetNewFloatData
GetNumberADChannels

88

88

89

89

89

90

90

91

91

92
108
108
109
110
110
111
112
112
112
113
113
114
114
114
115
115
116
117
117
118
119
119
120
120
120
121
122
122
122
123
123
124
124
124
125
125
126
127
128
128
129
129
129
130
130
131
131

TABLE OF CONTENTS
Page 4

ANDOR®
AT TABLE OF CONTENTS

GetNumberAmp 131
GetNumberAvailablelmages 131
GetNumberDevices 132
GetNumberFKVShiftSpeeds 132
GetNumberHorizontalSpeeds 132
GetNumberHSSpeeds 133
GetNumberNewlmages 133
GetNumberPreAmpGains 134
GetNumberRingExposureTimes 134
GetNumberlO 134
GetNumberVerticalSpeeds 135
GetNumberVSAmplitudes 135
GetNumberVSSpeeds 135
GetOldestimage 136
GetOldestimagel6 136
GetPhysicalDMAAddress 137
GetPixelSize 137
GetPreAmpGain 137
GetReadOutTime 138
GetRegisterDump 138
GetRingExposureRange 138
GetSizeOfCircularBuffer 139
GetSlotBusDeviceFunction 139
GetSoftwareVersion 140
GetSpoolProgress 140
GetStatus 141
GetTemperature 142
GetTemperatureF 142
GetTemperatureRange 143
GetTemperatureStatus 143
GetTotalNumberlmagesAcquired 143
GetlODirection 144
GetlOLevel 144
GetVersioninfo 145
GetVerticalSpeed 145
GetVirtualDMAAddress 146
GetVSSpeed 146
GPIBReceive 147
GPIBSend 147
I2CBurstRead 148
I12CBurstWrite 148
I2CRead 149
I2CReset 149
I2CWrite 150
IdAndorDl| 150
InAuxPort 150
Initialize 151
InitializeDevice 151
IsCoolerOn 152
IsinternalMechanicalShutter 152
IsAmplifierAvailable 152
IsPreAmpGainAvailable 153
IsTriggerModeAvailable 153
Merge 154
OutAuxPort 154
PrepareAcquisition 155
SaveAsBmp 156

TABLE OF CONTENTS
Page 5

ANDOR"

TABLE OF CONTENTS

SaveAsCommentedSif
SaveAsEDF

SaveAsFITS
SaveAsRaw

SaveAsSif

SaveAsSPC

SaveAsTiff
SaveAsTiffEx
SaveEEPROMToFile
SaveToClipBoard
SelectDevice
SendSoftwareTrigger
SetAccumulationCycleTime
SetAcqStatusEvent
SetAcquisitionMode
SetAcquisitionType
SetADChannel
SetAdvancedTriggerModeState
SetBackground
SetBaselineClamp
SetBaselineOffset
SetCameraStatusEnable
SetComplexlmage
SetCoolerMode
SetCropMode
SetCurrentCamera
SetCustomTrackHBin
SetDACOutputScale
SetDACOutput
SetDataType
SetDDGAddress
SetDDGGain
SetDDGGateStep
SetDDGlnsertionDelay
SetDDGIntelligate
SetDDGIOC
SetDDGIOCFrequency
SetDDGIOCNumber
SetDDGTimes
SetDDGTriggerMode
SetDDGVariableGateStep
SetDelayGenerator
SetDMAParameters
SetDriverEvent
SetDualExposureMode
SetDualExposureTimes
SetEMAdvanced
SetEMCCDGain
SetEMClockCompensation
SetEMGainMode
SetExposureTime
SetFanMode
SetFastKinetics
SetFastKineticsEx
SetFastExtTrigger
SetFilterMode
SetFilterParameters

157
157
158
158
159
160
160
161
162
162
162
162
163
163
164
164
164
165
166
166
166
167
168
169
169
171
171
172
172
173
173
173
173
174
174
175
176
177
177
178
178
179
180
181
182
182
183
183
184
184
185
185
186
187
188
188
188

TABLE OF CONTENTS
Page 6

ANDOR®
AT TABLE OF CONTENTS

SetFKVShiftSpeed 189
SetFPDP 189
SetFrameTransferMode 189
SetFulllmage 190
SetFVBHBIn 190
SetGain 191
SetGate 191
SetGateMode 192
SetHighCapacity 193
SetHorizontalSpeed 193
SetHSSpeed 194
Setlmage 195
SetlmagefFlip 196
SetlmageRotate 197
SetlsolatedCropMode 198
SetKineticCycleTime 199
SetMCPGain 199
SetMCPGating 200
SetMessageWindow 200
SetMetaData 200
SetMultiTrack 201
SetMultiTrackHBin 202
SetMultiTrackHRange 202
SetNextAddress 203
SetNextAddress16 203
SetNumberAccumulations 203
SetNumberKinetics 203
SetNumberPrescans 204
SetOutputAmplifier 204
SetOverlapMode 205
SetPCIMode 206
SetPhotonCounting 207
SetPhotonCountingThreshold 207
SetPixelMode 207
SetPreAmpGain 208
SetRandomTracks 209
SetReadMode 210
SetRegisterDump 210
SetRingExposureTimes 211
SetSaturationEvent 212
SetShutter 213
SetShutterEx 214
SetShutters 215
SetSifComment 215
SetSingleTrack 215
SetSingleTrackHBin 216
SetSpool 217
SetStorageMode 218
SetTemperature 218
SetTriggerlnvert 219
SetTriggerMode 219
SetlODirection 220
SetlOLevel 220
SetUserEvent 221
SetUSGenomics 221
SetVerticalRowBuffer 221
SetVerticalSpeed 222

TABLE OF CONTENTS
Page 7

ANDOR"

TABLE OF CONTENTS

SetVirtualChip
SetVSAmplitude
SetVSSpeed

ShutDown
StartAcquisition
UnMapPhysicalAddress
WaitForAcquisition

WaitForAcquisitionByHandle
WaitForAcquisitionByHandleTimeOut
WaitForAcquisitionTimeOut

WhiteBalance

SECTION 12 - ERROR CODES

SECTION 13 - DETECTOR.INI

DETECTOR.INI EXPLAINED
[SYSTEM]
[COOLING]

[DETECTOR]
Format
DummyPixels
DataHShiftSpeed
DataVShiftSpeed
DummyHShiftSpeed
DummyVShiftSpeed
VerticalHorizontalTime
CodefFile
FlexFile
Cooling
Type
FKVerticalShiftSpeed
Gain
PhotonCountingCCD
EMCCDRegisterSize
iStar
SlowVerticalSpeedFactor
HELLFunction
HELLLoop1l
ADChannels
AD2DataHSSpeed
AD2DumpHSSpeed
AD2BinHSSpeed
AD2Pipeline
iXon

EXAMPLE DETECTOR.INI FILES

DH220
DV420
Dv437

[CONTROLLER]
ReadOQutSpeeds

222
223
224
224
225
226
227
227
229
230
231

232

233
233
234
235

236
236
236
236
236
237
237
237
237
238
238
238
238
238
238
239
239
239
239
239
239
239
240
240
240
240

240
240
240
241

242
242

TABLE OF CONTENTS
Page 8

TABLE OF CONTENTS
PipeLine 242
Type 242

TABLE OF CONTENTS
Page 9

ANDOR"
«-ATDY INTRODUCTION

SECTION 1 - INTRODUCTION

The Andor Software Development Kit (SDK) gives the programmer access to the Andor range of CCD and

Intensified CCD cameras. The key part of the SDK is the Dynamic Link Library (DLL) which can be used with a
wide variety of programming environments, including, C, C++, C#, Visual Basic and LabVIEW. The library is
compatible with Windows 2000, XP, Vista and Windows 7. A Linux version of the SDK is also available.
Currently, Andor provides both 32-bit and 64-bit versions of the SDK, for Windows and Linux.

The SDK provides a suite of functions that allow you to configure the data acquisition process in a number of
different ways. There are also functions to control the CCD temperature and shutter operations. The driver will
automatically handle its own internal memory requirements.

To use the SDK effectively, the user must develop a software package to configure the acquisition, provide
memory management, process the data captured, and create the user interface.

The manual is broken into several sections, and it is recommended that the user read Sections 1 - 10 before
starting to use the SDK. These sections describe the installation process, camera initialization/configuration
and data capture.

Section 11 is a complete function reference detailing the function syntax, parameters passed and error codes
returned.

To further aid the user there is a comprehensive list of examples included with the SDK. The examples
illustrate the use of C, Visual Basic and LabVIEW.

SECTION 1
Page 10

ANDOR"
«-ATDY INTRODUCTION

TECHNICAL SUPPORT

Contact details for your nearest representative can be found on our website.

SOFTWARE IMPROVEMENTS AND ADDITIONAL FEATURES
Version 2.87.30000.0

New features:

e Clara E now supported

e Newton DU970/71P cameras now supported

e Cycle time reduced for imaging on Newton and iVac systems

¢ Number of accumulations can now be set in a kinetic series in overlap mode

e FVB cycle time reduced in crop mode provided only the height of the sensor has been cropped

Bug fixes:

e Clara near infra red mode not operating correctly when using FVB read mode

e Minimum exposure time increased to 1 millisecond for Clara near infra red mode

e Change to remove odd/even pixel noise after a number of accumulations in iDus

e Change to resolve image wrap around on Newton sensors

e Image was being shifted between frames when photon counting was being used on a Clara
e Fast kinetics now working in FVB mode

e First pulse missed in ring of exposures on Clara

e Updated bitmap header data to allow avi's to play in Windows 7

e Multiple systems was not supported for 64-bit Windows

e TimeStamp from Clara meta data was incorrect for a kinetic series of accumulations
¢ Video mode was eventually freezing in iCam PCI systems

e Fix for Spooling to fits issue in Windows 7

e Fix for image shift seen in DU940P newton cameras

Version 2.86.30000.0

New features:

e Clara meta data now stored in sif file format

e Vertical and horizontal flip tags added to the FITS header

¢ Newton now supports multiple images per USB interrupt to reduce CPU load
e Support added for new revision of Newton DU920P

e Control of gate mode added to iStar floating toolbar

Bug fixes:

e Fixed bug where SetPhotonCountingThreshold was always returning DRV_NOT_SUPPORTED

e Fixed reported acquisition timings for external trigger non frame transfer mode

e Fixed the SDK flipper mirror issue (problem with the port numbers being used) and updated shipped
examples

e GetFIFOUsage is now thread safe

e USB driver for SR500 and SR750 updated to avoid conflicts with servo controllers

e Fixed External trigger, frame transfer, video mode operation

Version 2.85.30000.0

New features:

e Andor Clara image quality improved

SECTION 1
Page 11

ANDOR®
A0 INTRODUCTION

e Option to run external exposure in a kinetic series for all cameras which support iCam
e Photon Counting check added to GetCapabilities
e Added kinetic cycle time tag to spooled tiff files
e PrepareAcquisition now returns an error if insufficient memory available
Bug fixes:

e SetSpool now returns DRV_NOT_AVAILABLE under Linux when trying to spool to FITS
e Fixed crash on initialize when no Andor cameras were connected

e Fixed problem with reinitializing Shamrock models SR500 and SR750

e Fixed problem where calling IsCoolerOn during an acquisition could stop the acquisition
e Fixed issue where events from a previous acquisition were not getting cleared

e Additional pixel shift removed from overlap mode on Clara

Version 2.84.30000.0

New features:

e Andor Clara now supported
SetDACOutput
SetDACOQutputScale
GetNumberlO
SetlODirection
SetlOLevel
GetlOLevel
GetlODirection
SetTriggerinvert
IsAmplifierAvailable
SetOverlapMode
SetMetaData
GetMetaDatalnfo

Bug fixes:

e Spooled files beyond 4GB could not be opened

e Data was being lost when spooled files of small images went beyond 4GB

e Spooled FITS file had cycle time saved as 0

e |IsPreAmpAvailable should use channel passed rather than current one

¢ Random tracks data corrupted for consecutive tracks for cameras other than iXon+

e Getlmages16 LabVIEW wrapper was calling wrong SDK function

Version 2.83.30001.0

New features:

e Added SetlmageFlip and SetimageRotate functions to LabView wrapper

Bug fixes:

¢ Added ShamrockGetCalibration function to the Shamrock SDK help

SECTION 1
Page 12

ANDOR"
«-ATDY INTRODUCTION

Version 2.83.30000.0

New features:

e iVac systems now fully supported

e Shamrock spectrographs SR500 and SR750 now fully supported
e Fast kinetics now available for Luca-R

e Added High Capacity Mode support for DW936 cameras

Bug fixes:

o Fixes to Delphi header

o Fixed discrepancies between cycle times for multi-track and random track

e Fixed problem in fast kinetics when there was an odd number of super pixels
e Removed corrupted fire pulse in fast kinetics, external trigger

o Fix to resolve oscillations in data for certain Newton systems

o Fix for potential fail of auto cooling on Luca systems

e Fixed maximum number in series in fast kinetics for frame transfer systems
o Fixed exposure time reported in fast kinetics

Version 2.82.30000.0

New features:

e Added option for horizontal binning in random track mode

e Added capabilities for Horizontal Binning, MultiTrackHRange, and No Gaps in Random Tracks
o New capability added to test for overlapped external exposure mode

o Deprecated SetGain for SetMCPGain which is a more accurate naming convention

e Added Dud column support to SDK — allows SDK to be configured to interpolate bad columns

Bug fixes:

e Fixed minimum exposure for Luca-R

e Updated documentation — error code correction for get data functions.
o Fixed missing cases of GetTemperature in LabVIEW wrapper.

e Updated documentation — Corrected contact information.

e StartAcquisition now returns an error if horizontal binning does not divide evenly into range for
multi-tracks

e Fixed crash when StartAcquisition is called in random track mode before random tracks are setup
e Fixed default EM gain — Set to off when system initialized

e SetRandomTracks no longer returns an error if not in random track mode

¢ Image mode Linux example will now work with an InGaAs

e SetRandomTracks was not returning an error for certain incorrect track combinations

o Fixed SetBaselineClamp and SetBaselineOffset — The test for availability was not complete

o Fixed GetRingExposureRange - Now uses same limit as SetRingExposureTimes

o Fixed SetRandomTracks - Was failing for some valid tracks

SECTION 1
Page 13

ANDOR"
«-ATDY INTRODUCTION

e Fixed SetGain error code - Now returns DRV_NOT_SUPPORTED if not an ICCD

o Fixed bug in SetRandomTracks to prevent negative numbers for number of tracks with correct
return code

o GetAmpMaxSpeed now tests for NULL array parameter

e SetCustomTrackHBin returns DRV_NOT_SUPPORTED if not available for a system
o Fixed GetAmpDesc — Tests negative value for 3rd parameter — could cause crash

o Fixed GetAmpDesc — could return unterminated string

e Luca R cooler control was never supported but SDK returned DRV_SUCCESS - SDK functions
now return proper error codes

e Fixed bug in Initialisation/Shutdown cycling — could cause crash
e Extra fire pulse when using kinetic series external exposure on DU885
o Fixed incorrect data when using kinetic series external exposure on Luca-R
o Fixed external exposure trigger mode for Luca-S
Version 2.81.30004.0

New features:

e Improved noise performance on DZ936 cameras at 3 and 5MHz horizontal readout speeds

Bug fixes:

e None

Version 2.81.30003.1

New features:

e None

Bug fixes:

o Fixed some documentation errors in LabVIEW context help
e Fixed Shamrock close and re-initialisation in C interface of Shamrock SDK
e Fixed Shamrock close operation in LabVIEW

Version 2.81.30002.0

New features:

e None

Bug fixes:

e Fixed cooling issue on Fibre Optic systems

e Fixed hot column issue on iXon DU888 cameras.
o Fixed crash in External Trigger on Newton

e Fixed DLL error on Windows Install program.

SECTION 1
Page 14

ANDOR"

-

INTRODUCTION

Version 2.81

New features:

Improved shutdown in Linux during abnormal termination (Ctrl+C etc.) — signal handlers added

CCI-24 support added to Linux SDK

Bug fixes:

Removed Linux Device Driver compilation warnings for Kernel 2.6.23 and above.

Crash could occur if GetAcquiredData was called before PrepareAcquisition or StartAcquisition.

SetDriverEvent causes crash when called when system not initialized.

GetlmagesPerDMA did not return correct value unless PrepareAcquisition has been called.

Timings incorrect for Frame Transfer in iCam mode.

GetMostRecentimage[16] now returns correct data when used in Accumulate acquisition mode

Fixed crash that would occur if GetNumberAvailablelmages called before acquisition started

Acquisitions now complete correctly if camera is reinitialised after being previously shutdown

64-bit SDK will now initialise USB cameras without the necessity of having libusb0_x64.dll in same

directory as executable.

Calibration values returned from Shamrock SDK were offset by 2 pixels from correct locations

Fixed memory leak in SaveAsSif
Fixed Luca re-initialisation issue - temperature reporting incorrect
Documentation updates and corrections

Version 2.80

New features:

iKon-L support added

Added SetAccumulationCycleTime to LabVIEW library

Random and multi tracks now available in frame transfer mode for iXon+
SetNumberPrescans function added

New timing functions added
GetKeepCleanTime
GetReadOutTime

Bug fixes:

SetEMAdvanced was not working on Luca-R

Random tracks external start was broken on a DU888

InGaAs was not working in last release

Multiple USB cameras could not be controlled

Fast Kinetics external trigger was not working on early DV885 cameras
Kinetic cycle time calculated wrongly when accumulating

Page 15

SECTION 1

ANDOR"

-

INTRODUCTION

Version 2.79

New features:

Memory allocation improved to allow larger kinetic series to be acquired without spooling
Luca-R range supported

iKon-L supported

GetlmageFlip and GetimageRotation added

Multi tracks available in frame transfer mode for iXon+

Random tracks available in frame transfer mode for iXon+

Capability added to test for multi and random tracks in frame transfer
SetMultiTrackHRange added

Random tracks can now be configured with no gaps in between for iXon+

Bug fixes:

Temperature drifting is now handled for all cameras
GetTemperatureStatus did not return result for iXon

Pixel values for last column on DU885 incorrect

Fast kinetics, external trigger not operating correctly on a DU885
Crash when initiailising multiple usb cameras

Kinetic cycle time could not be set reliably

Shutter timings not correct at 35MHz on a DU885

SetShutter function not functioning correctly for iXon+

Grams files created not compatible with certain software packages
EM gain could not be turned off completely

Glitches were found in fire pulse for FVB mode on iXon+

Image flipping and rotation properties incorrect in sif file

CCI-20 controller card not initialising (ERROR_ACK)

Version 2.78.5

New features:

SetlsolatedCropMode added to LabVIEW library

SaveAsTiffEx function added to provide choice of whether data is scaled

Bug fixes:

SaveAsTiff function for a kinetic series saved the same image for every frame
SaveAsTiff now checks for available memory to avoid crash

GetHeadModel function was returning model in lowercase

iXon FPGA version not being read properly in Initialize function

SetlsolatedCropMode function repaired

GetAvailableCameras did not update with USB devices plugged in & out

Using GetCameraEventStatus on fast acquisitions caused acquisition to fail

Long kinetic series of FITS was not working

SECTION 1
Page 16

ANDOR"

-

INTRODUCTION

Version 2.78

New features:

Support for Luca 285 added.
Data transfer from USB cameras improved.

SetlsolatedCropMode function added to provide crop mode option (added for iXon+):

Improved support for integrate on chip: Added
GetDDGIOCFrequency

GetDDGIOCNumber

SetDDGIOCNumber

Option to export to raw data:

SaveAsRaw

Bug fixes:

SaveAsSif in SDK not storing readout speed correctly.
Shutter now works correctly for Classic cameras when the software is run for the first time after
rebooting PC.

Data was wrapping at 65K if taking a kinetic series of accumulations.

Version 2.77

New features:

Supports 32 and 64-bit Windows XP and Vista

Moved to new USB device driver libUSB

iCam: New Run Till Abort functionality for latest iXon (with CCI-23 controller card), and Luca
Cameras:

SendSoftwareTrigger

SetRingExposureTimes

GetAdjustedRingExposureTimes

GetNumberRingExposureTimes

GetRingExposureRange

IsTriggerModeAvailable

New image manipulation functions:

SetimageFlip

SetlmageRotate
Save as GRAMS SPC file format — SaveAsSPC

Calculate the red and blue relative to green factors to white balance a colour image - WhiteBalance

SECTION 1
Page 17

ANDOR"
S0 INTRODUCTION

Version 2.76

New features:
e Additional capabilities added to GetCapabilities function

e GetAmpDesc function added

e Timeout added for WaitForAcquisition function

Bug fixes:
e Error returned if an invalid EM gain mode is selected

o Fixed issues with Fast Kinetics on an iXon
e Sometimes a camera was not ready to acquire when an acquisition event was sent

o Fixed initialization problem when a ‘.’ was in the path send to Initialize() function

Version 2.75

New features:
e Spooling to FITS, SIF and TIFF now available.

e SetBaselineOffset function added

e SetShutterEx added to control both an internal and external shutter through a DV8285
e SaveAsSif now handles spooled files
Bug Fixes:

o GetNumberHSSpeeds now includes error checking for classics

o GetCapabilities returns correct bit depth for an iDus

o |sPreAmpGainAvailable now indicates yes for classic cameras as long as the gain index is zero and

other parameters are valid
e EMGain Capability now returned correctly for iDus, Newton, USB iStar

o SaveAsBmp was not working in latest version
Version 2.74

New features:
e Support for new Luca range of Cameras
e Control of linear EM gain:
GetEMCCDGain
GetEMGainRange
SetEMGainMode
e Option to save to FITS file format : SaveAsFITS

e Crop mode available with Newton: SetCropMode

SECTION 1
Page 18

ANDOR"
S A= INTRODUCTION

Version 2.73

New features:
e Support for Newton and SurCam range of Cameras
Bug fixes:

o GetMostRecentlmage does not now prevent access to images previous to the one obtained

e Controller type can be tested.

SECTION 1
Page 19

ANDOR
*AT0Y INSTALLATION

SECTION 2 - SOFTWARE INSTALLATIONS

PC requirements
Please consult the Specification Sheet for your camera for the minimum and the recommended PC

requirements.

SDK WINDOWS INSTALLATION
The installation of the Andor SDK software is a straightforward process, the steps for which are outlined
below. Before proceeding with the installation, it is recommended that you read the remainder of this

section first.

1. Insert the CD supplied with the SDK, and execute the "SETUP.EXE" program. This will take you
through the complete installation process. You will be prompted to select the type of camera you
have purchased as the installation needs to configure, were required, the "Detector.ini" file
appropriately. You will also be requested to select a destination directory; this should be a directory
that all users planning to use the SDK have full read/write privileges to. The directory will be
created if it does not already exist. It is recommended that if you are performing an upgrade or

reinstall that you do it to a clean directory.
Example programs will be copied into sub-directories of the installation directory specified above.

2. If not already installed, proceed with installing camera hardware. Consult your User guide for

details. You may have to restart the PC to complete the installation

3. Navigate to the directory ‘<destination directory>\Examples\C’ directory. Go into any
sub directory and run the ‘.exe’ file that you see there. If this runs successfully then your
installation has completed. If it does not run with a successful message please consult the

troubleshooting guide later in this section.
The installation process will copy the following files into the specified base directory:
ATMCD32D.DLL (32-bit Dynamic Link Library)
ATMCD64D.DLL (64-bit Dynamic Link Library)
DETECTOR.INI (Classic CCD, ICCD and iStar cameras only)
ATMCD32D.H (C, C++ only)
ATMCD32D.LIB (Borland compatible library, C, C++ only)
ATMCD32M.LIB (Microsoft compatible library, C, C++ only)
ATMCD32D.BAS (Visual Basic only)
ATMCD32D.PAS (Pascal only)
ATMCD32CS.DLL (C# only)
ATMCD32D.VB (VB.net)

SECTION 2
Page 20

ANDOR"
& A INSTALLATION

NOTE: The files are also copied into each example directory. This is to allow each example to be

run as a stand-alone program.

A device driver required to support the camera will also be installed. The actual driver installed will depend

on the camera type and operating system version, i.e.:

e For PCl systems the driver file is atmcdwdm.sys for 32-bit operating systems, or

atmcdwdm64.sys for 64-bit operating systems.

e For USB cameras the driver file is libusb0.sys for 32-bit operating systems, or libusb0_x64.sys
for 64-bit operating systems.

NOTE: Do not have more than one example or other SDK software (e.g. Andor Solis™, iQ™)
running at the same time.

SECTION 2
Page 21

ANDOR"
& A INSTALLATION

Windows Troubleshooting

If you are running a PCI camera

e Check that the Andor Technology PCI driver appears in the Ensure that an Andor section in exists
in the Device Manager and that an Andor Technology PCI driver appears in it. To access the
Device Manager, go to the Control Panel and click on the “System” control. From here, select the
Hardware tab and then click on the Device Manager button.

e Shut down the PC and ensure that the PCI card is seated correctly

o For 32-bit OS, ensure that the file atmcdwdm.sys file appears in the
C:\WINDOWS\system32\drivers directory. The latest version is 4.29.0.0

o For 64-bit OS, ensure that the file atmcdwdm64.sys file appears in the
C:\WINDOWS\system32\drivers directory. The latest version is 4.29.0.0

e |f the Windows NT driver atmcd.sys is in the “Drivers” directory delete it and restart the PC.

If you are experiencing communication problems with the Andor USB cameras carry out the following
actions:

e Confirm that the PC being used is USB 2.0 compatible and that a USB 2.0 port is being used for the

camera

e Check the power to the iDus camera.

e Check the USB cable from the PC to the iDus camera.

e Ensure that a LibUSB-Win32 Devices section exists in the Device Manager and tab and that your
camera is listed. To access the Device Manager, go to the Control Panel and click on the “System”
control. From here, select the Hardware tab and then click on the Device Manager button. If the
entry does not exist or there is an exclamation mark beside it carry out the following actions

1. Power the camera off and on and after the new hardware is detected, follow the instructions to
install a driver for the new device. When asked for a location, point to the directory where the
software was installed.

2. |If there is a USB device with an exclamation mark beside it and you cannot account for this
device then it is probably the Andor camera and the driver is not installed. Install the driver as
described previously or right click on the entry and update driver.

3. Close down any Andor software, remove the USB cable from either the camera or the PC and

reconnect it again. Run the software to see if the camera is now detected.

4. |If still not connected then , remove the USB cable from either the PC or the camera, power the

camera off and on the camera and reconnect the USB cable again.

5. Run the software to see if the camera is now detected.

NOTE: If the camera is still not detected after step 6, please contact the appropriate technical

support person

SECTION 2
Page 22

ANDOR"
& A INSTALLATION

SDK LINUX INSTALLATION

The first step is to unpack the archive that you have received. With the following steps replace <version>
with the version number of the archive you have. E.g. 2.15

1. Open a terminal
2. Change the directory to where the andor-<version>.tar.gz file is located
3. Type 'tar -zxvf andor-<version>.tar.gz'

A new directory named 'andor’ is created.

To install the SDK run the script ‘install_andor’ from the ‘andor’ directory. See the INSTALL’ file located in
the same directory, for further information.

LABVIEW INSTALLATION

When you install the SDK onto a machine with LabVIEW installed, the SDK DLL and LabVIEW files are
automatically copied into the LabVIEW install directory.

All Andor SDK function wrappers are present in a LabVIEW library file, "atmcd32d.1Ib", installed in your
“user.lib” directory in you LabVIEW install folder.

The library can be added to any of your palette views. Instructions for adding the SDK to your palette view
are described below.

Note: Depending on the version of LabVIEW you are using, the menu structure may be different. Please
consult your LabVIEW manual for general help on adding LLBs if you have any issues.

-_—

Select the menu item "Tools -> Advanced -> Edit Palette Views..."

)
2) Right Click on the Functions tool bar & select "Insert -> Submenu..."
3) Inthe dialog select "Link to LLB library..."
4) Navigate to the user.lib directory and select "atmcd32d./Ib" - The submenu with all SDK functions

has been added
5) Right click on the new palette view and select "Rename Submenu..."
6) Change the name to "Andor SDK"
7) Repeat steps 2-6 for the Controls tool bar.

SECTION 2
Page 23

ANDOR"
& A INSTALLATION

Linux Troubleshooting
If you are having trouble running your camera under the Linux operating system please check the following

before contacting Technical Support

For PCI,

e Check that the device driver is loaded. Type ‘/sbin/1smod’ —andordrvix should be listed.
For USB,

e Check that libUSB is available, ‘whereis libusb’

o Check that the Andor device is listed in the /proc/bus/usb/devices file.

e Check that the relevant device under /proc/bus/usb/00X/00Y has write access for all users.

SECTION 2
Page 24

S\a

ANDOR"

TECHNOLOGY

READOUT MODES

INTRODUCTION

SECTION 3 - READOUT MODES

Andor systems are based on a detector known as a Charged Coupled Device (CCD). The detector is divided

up as a 2-dimensional array of pixels, each capable of detecting light. For example, systems based on an

EEV 30-11 CCD chip have 1024 X 256 pixels, where each pixel is 26um2 (all examples given in this manual

assume an EEV 30-11 based system). This 2-dimensional nature allows the device to be operated using a

number of different binning patterns. We refer to these binning patterns as Readout Modes.

Andor has several different readout modes as follows:
Full Vertical Binning (FVB)

Single-Track
Multi-Track

Random-Track

Image

Cropped

Figure 1 shows the binning patterns :

BINNING PATTERNS

Murmber

FULL YERTICAL BINHING SINGLETRACK
Track
Chip Height
Height
MULTHTRACK RANDOM HULTITRACK
Track
HeightI'.IIIIIIIIIHIHIIIIIII 5
G TT g TTIT T T AT TV T T
orfs:t'%l'””ll'”””l”mm 3
0] ITTTTTATTT T T iR | [EEENIRRINTRNRNNNNNANE!
TTTTTTATTTTITTTTT TR RRT {4 [EEERIRRINTRNRNNENNANE!
FULL IMAGE Track IMAGE

=

Cetitre
Fou

Figure 1: Binning patterns

We will now look at each of these modes in more detail.

NOTE: All of the patterns described can be simulated by the user in software but by carrying out
the pattern in the camera greatly increases speed and improves Signal to Noise ratio.

Page 25

SECTION 3

ANDOR"
o ANDY READOUT MODES

Full Vertical Binning
Full Vertical Binning (FVB) is the simplest mode of operation. It allows you to use the CCD chip as a Linear
Image Sensor (similar to a photo diode array). The charge from each column of pixels is vertically binned
into the shift register. This results in a net single charge per column. Therefore, for a 30-11 CCD an

acquisition using FVB will result in 1024 data points.

To set-up a Full Vertical Binning acquisition call:
SetReadMode(0)

FULL YERTICAL BINNING

Chig
Height

Figure 2: Full Vertical Binning
Single-Track
Single-Track mode is similar to the Full Vertical Binning mode discussed previously in that upon completion

of an acquisition you will have a single spectrum. However, that is where the similarities end.

With Single-Track you can specify not only the height (in pixels) of the area to be acquired but also its vertical
position on the CCD. To ensure the best possible Signal to Noise ratio all the rows within the specified area

are binned together into the shift register of the CCD and then digitized.

SINGLE-TRACK

Track __-Cenme
Height (ST

Figure 3: Single-track
Single-Track mode is useful because you are able to precisely define only the area of the CCD sensor that is
illuminated by light. This is particularly important in low light level applications as it allows you to minimize the
contribution of dark current in the measured signal. Also, if you are using an imaging spectrograph, such as

the Shamrock, with a multiple core fiber, this mode allows you to select a single fiber for examination.
To set-up a Single-Track acquisition you need to call the following functions:
SetReadMode(3);

SetSingleTrack(128,20);

NOTE: If a non frame-transfer camera is used, a shutter may be required to prevent light (which would
otherwise fall on the CCD-chip outside the specified track) from corrupting the data during binning.
Please refer to SECTION 8 - SHUTTER CONTROL for further information.

SECTION 3
Page 26

ANDOR"
o ANDY READOUT MODES

Multi-Track
Multi-Track mode allows you to create one or more tracks (each of which behaves like the Single-Track
above). With Multi-Track you specify the number of tracks and the track height. The driver internally sets the
actual position of each track so that the tracks are evenly spaced across the CCD. The tracks can be
vertically shifted, en masse, by specifying a positive or negative offset about a central position. For greater

control over the positioning of the tracks use Random-Track mode.

MULTI-TRACK
Track
gt LLLLLLLLLLLCTTTTT T T s
GHLLULTILITTILTI T] fa
—
mﬁ*IIIIIIIIIIIIIIIIIIIIII 3
0] LTI =
LLOLL T LTI LTI o
Track
Mumbet

Figure 4: Multi-Track
Multi-Tracks will allow you to simultaneously acquire a number of spectra, delivered typically via a fiber

bundle. If you are using a non-frame transfer camera and a continuous source, you will need to use a shutter
to avoid streaking the spectra during the binning process. Please refer to SECTION 8 - SHUTTER
CONTROL for further information.

To set-up a Multi-Track acquisition you need to call the following functions:

SetReadMode(1);
SetMultiTrack(5,20,0,bottom, gap);

The SetMultiTrack function also returns the position of the first pixel row of the first track “bottom”, together

with the gap between tracks, “gap”. This allows the user to calculate the actual position of each track.

NOTE:

1. Before using Multi-Track mode with fiber bundles it is often useful to acquire a full resolution
image of the output. Having observed the vertical position and spacing of the individual

spectra, you can vary track height and offset accordingly.

2. Imaging spectrographs vertically invert input light (i.e. light from the top fiber will fall on the
bottom track on the CCD-chip.)

SECTION 3
Page 27

ANDOR"
-

READOUT MODES

Random-Track

In Random-Track mode the position and height of each track is specified by the user, unlike Multi-Track

mode were the driver sets the position of each track automatically.

RANODOM TRACK

ERIRIRRNARENRNRNARINENE:

[T T[]z
ERIRIRRNRRENRNANANININE

Track Mumber l

Figure 5: Random-Track

Random-Track will allow you to simultaneously acquire a number of spectra, delivered typically via a fiber

bundle. Unless you are acquiring data from a pulsed source you will need to use a shutter to avoid streaking

the spectra during the binning process. To set-up a Random-Track acquisition you need to call the following

functions:

SetReadMode(2);

int position[6];

position[0] = 20;

position[1] = 30; //end of track 1, 11 rows height
position[2] = 40; //start of track 2

position[3] = 40; //end of track 2, 1 row height
position[4] = 100; //start of track 3

position[5] = 150; /end of track 3, 51 rows height
SetRandomTracks(3,position);

The SetRandomTracks function validates all the entries and then makes a local copy of the tracks positions.

For the array of tracks to be valid the track positions MUST be in ascending order.

NOTES:
1. A track of 1 row in height will have the same start and end positions.
2. Before using Random-Track mode with fiber bundles it is often useful to acquire a Full
Resolution Image of the output.
3. Having observed the vertical positions of the individual spectra set the Random-Track mode
accordingly.
4. Imaging spectrographs vertically invert input light (i.e. light from the top fiber will fall on the

bottom track on the CCD-chip.)

SECTION 3
Page 28

ANDOR"
o ANDY READOUT MODES

Image
In Image mode the CCD is operated much like a camera. In this mode you get a measured value for each
pixel on the CCD, in effect allowing you to ‘take a picture’ of the light pattern falling on the pixel matrix of the
CCD. To prevent smearing the image, light must be prevented from falling onto the CCD during the readout
process. Please refer to SECTION 8 - SHUTTER CONTROL for further information.

--"""\-\-
|~ SUPERPIXELS

Figure 6: Image mode

To reduce the file size and increase the speed of readout it is possible to specify a sub-area of the CCD to be

read out. It is also possible to bin pixels together horizontally and vertically to create super pixels.

To set up a “Full Resolution Image” acquisition you need to call the following functions:

SetReadMode(4);
Setlmage(1,1,1,1024,1,256);

To acquire a sub-area with lower left co-ordinates of (19, 10), with binning of 4 in both the horizontal and
vertical directions, and 100x16 pixels in the acquired image you would call the Setimage function with the

following parameters:
Setlmage(4,4,19,118,10,25);

By a process of binning charge vertically into the shift register from several rows at a time (e.g. 4) and then
binning charge horizontally from several columns of the shift register at a time (e.g. 4) the ANDOR SDK
system is effectively reading out charge from a matrix of super pixels which each measure 4 x 4 real pixels.
The result is a more coarsely defined image, but faster processing speed, lower storage requirements, and a
better signal to noise ratio (since for each element or super pixel in the resultant image, the combined charge
from several pixels is being binned and read out, rather than the possibly weak charge from an individual

pixel).

SECTION 3
Page 29

ANDOR"
o ANDY READOUT MODES

Cropped
In Cropped mode, we can "fool" the sensor into thinking it is smaller than it actually is, and readout
continuously at a much faster frame rate. The spectral time resolution is dictated by the time taken to readout
the smaller defined section of the sensor.

If your experiment dictates that you need fast time resolution but cannot be constrained by the storage size of

the sensor, then it is possible to readout the EMCCD in a "cropped sensor" mode, as illustrated below.

Figure 7: Cropped mode

To set up the CCD with a cropped image, as in figure 7, see SetlsolatedCropMode.

NOTE: It is important to ensure that no light falls on the excluded region otherwise the
acquired data will be corrupted.

SECTION 3
Page 30

ANDOR®
A2 ACQUISITION MODES

SECTION 4 - ACQUISITION MODES

ACQUISITION MODE TYPES
In the previous section the different ReadOut Modes (binning patterns) supported by the Andor SDK were
discussed. In addition the Andor SDK allows you to control the number and the timing details of acquisitions made
using the various binning patterns. To simplify the process of controlling these acquisitions the Andor SDK has

divided the acquisition process into several different Acquisition Modes:

¢ Single Scan

e Accumulate

o Kinetic Series

e RunTill Abort

o Fast Kinetics
Single Scan is the simplest form of acquisition where a single scan is captured.
Accumulate mode takes a sequence of single scans and adds them together.

Kinetic Series mode captures a sequence of single scans, or possibly, depending on the camera, a sequence of
accumulated scans.

Run Till Abort continually performs scans of the CCD until aborted.

If your system is a Frame Transfer CCD, the acquisition modes can be enhanced by setting the chip operational
mode to Frame Transfer.

In the remainder of this section we will discuss in detail what each of these modes actually are and what needs to
be specified to fully define an acquisition.

The table below summarizes the information that is needed for each acquisition mode:

NO.
ACCUMULATE NO. KINETIC N
MODE EXPOSURE CYCLE OF CYCLE
- KINETIC
TIME ACCUMULATIONS TIME
SERIES
SINGLE SCAN X
ACCUMULATE X X X
KINETIC SERIES X X X X X
RUN TILL ABORT X X

FAST KINETICS X X X
NOTE: For the purpose of this document an acquisition is taken to mean the complete data capture
process. By contrast, a scan is a single readout of data from the CCD-Chip, i.e. a complete data

acquisition comprises the capture of one or more scans.

SECTION 4
Page 31

ANDOR®
A2 ACQUISITION MODES

Single Scan
Single Scan is the simplest acquisition mode available with the Andor system. In this mode Andor SDK

performs one scan (or readout) of the CCD and stores the acquired data in the memory of the PC.

Exposure Time SINGLE SCAN
i 1 il
- Example
— Exposure Time =035
[

To set the acquisition mode to Single Scan call:

SetAcquisitionMode(1)

SetExposureTime(0.3)

Here the exposure time is the time during which the CCD sensor is sensitive to light. The exposure time is set

via the SetExposureTime function.

NOTE: Due to the time needed to shift charge into the shift register, digitize it and operate shutters,
where necessary, the exposure time cannot be set to just any value. For example, the minimum
exposure time depends on many factors including the readout mode, trigger mode and the digitizing
rate. To help the user determine what the actual exposure time will be the driver automatically
calculates the nearest allowed value, not less than the user’s choice. The actual calculated exposure

time used by Andor SDK may be obtained via the GetAcquisitionTimings function (this function should

be called after the acquisition details have been fully defined i.e. readout mode, trigger mode etc.

have been set).

SECTION 4
Page 32

ANDOR®
A2 ACQUISITION MODES

Accumulate
Accumulate mode adds together (in computer memory) the data from a number of scans to form a single
‘accumulated scan’. This mode is equivalent to taking a series of Single Scans and “manually” adding them
together. However, by using the built-in Accumulate mode you gain the ability to specify the time delay (or

period) between two consecutive scans and also the total number of scans to be added.

ACCUMULATED

Example:
Exposure Time =035
Exposure Time Accurnulated Cycle time =1 55

B= ==, of Accumulations = 3
i
[] [] []

E:;-—! !-:.."_‘,]

Accurmulated Cycle Time

To set the acquisition mode to Accumulate call:

SetAcquisitionMode (2)

To fully define an Accumulate acquisition you will need to supply the follow information:

Exposure Time. This is the time in seconds during which the CCD sensor collects light prior to readout. Set

via the SetExposureTime function.

Number of Accumulations. This is the number of scans to be acquired and accumulated in the memory of

the PC. Set via the SetNumberAccumulations function.

Accumulate Cycle Time. This is the period in seconds between the start of each scan.

Set via the SetAccumulationCycleTime function. (This parameter is only applicable if you have selected
Internal trigger — Please refer to SECTION 6 — TRIGGERING for further information.

NOTES:

1. If the exposure time or the cycle time are set too low or are not permissible values, the driver
will automatically calculate the nearest appropriate value.

2. The actual values used can be obtained via the GetAcquisitionTimings function (this

function should be called after the acquisition has been fully defined (i.e. readout mode,

trigger mode etc. have been set).

3. In External Trigger mode the delay between each scan making up the acquisition is not
under the control of the Andor system but is synchronized to an externally generated trigger

pulse.

SECTION 4
Page 33

ANDOR®
A2 ACQUISITION MODES

Kinetic Series
Kinetic Series mode captures a sequence of single scans, or a sequence of accumulated scans, into
memory. This mode is equivalent to manually taking a series of single scans (or accumulated scans).
However, by using the built-in Kinetic Series mode you gain the ability to specify the time delay (or period)

between two consecutive scans and also the total number of scans to be acquired.

KINETIC SERIES

Exposure Time =033
Exposure Time Kinetic Cycle Time =35
.-' "- Mo, in Kinetic Series =3

pEEEp R

— =

Accumulated Cycle time=15183
— Mo, of Accumulations =3

finetic Cycle Time=23s5

Mo, in Kinetic series = 4

Kinetic Cycle Time
ACCUMULATED KINETIC SERIES
Exposure Time .

[Accurnulations |
T T TR -+
i i ' Example

= -] i . _
! counuted Gyele Thne : Exposure Time=033

NOTE: In External Trigger mode the delay between each scan making up the acquisition is not under

the control of the Andor SDK, but is synchronized to an externally generated trigger pulse.

SECTION 4
Page 34

ANDOR"
AN ACQUISITION MODES

To set the acquisition mode to Kinetic Series call:

SetAcquisitionMode(3)

To fully define a Kinetic Series acquisition you will need to supply the following information:
Exposure Time. This is the time in seconds during which the CCD collects light prior to readout.

Set via the SetExposureTime function.

Number of Accumulations. This is the number of scans you want to add together to create each member of
your kinetic series. The default value of 1 means that each member of the kinetic series will consist of a

single scan.

Set via the SetNumberAccumulations function.

Accumulate Cycle Time. This is the period in seconds between the start of individual scans (see Number of
Accumulations above) that are accumulated in computer memory to create each member of your kinetic

series - each member of the series is an ‘accumulated scan’.

Set via the SetAccumulationCycleTime function.

(This parameter is only applicable if you have selected the Internal trigger and the Number of Accumulations
is greater than 1- Please refer to SECTION 6 — TRIGGERING for further information.)

Number in Kinetic Series. This is the number of scans (or ‘accumulated scans’) you specify to be in your

series.

Set via the SetNumberKinetics function.

Kinetic Cycle Time. This is the period in seconds between the start of each scan (or set of accumulated

scans, if you have set the Number of Accumulations to more than 1) in the series.

Set via the SetKineticCycleTime function.

(This parameter is only applicable if you have selected the Internal trigger - see Trigger Modes.)
NOTE:

1. If the exposure time or the cycle time are set too low or are not permissible values, the driver

will automatically calculate the nearest appropriate value.

2. The actual values used can be obtained via the GetAcquisitionTimings function. This function

should be called after the acquisition has been fully defined i.e. readout mode, trigger mode
etc. have been set). If you are using a shutter, please refer to SECTION 8 — SHUTTER
CONTROL for further information

SECTION 4
Page 35

ANDOR"

ACQUISITION MODES

Run Till Abort

Run Till Abort mode continually performs scans of the CCD at the rate set by the user, until the acquisition is

stopped by calling the AbortAcquisition function. The minimum possible delay between each scan will be the

minimum Kinetic Cycle Time.

Exposure Time Run Till Abort
--: :--

LT
L.“.r-: :_:: e.q.

Minimum Kinetic Cycle Time Exposure Time = 0.3s

To set the acquisition mode to Run Till Abort call:

SetAcquistionMode(5)

SetExposureTime(0.3)

SetKineticCycleTime(0)

Here the exposure time is the time during which the CCD sensor is sensitive to light.

NOTES:

1.

The total number of images acquired during the acquisition can be obtained at any time by
calling the GetTotalNumberimagesAcquired function. The data acquired during the

acquisition will be stored in the circular buffer until it is overwritten by new scans. The

capacity of the circular buffer can be obtained by calling the GetSizeOfCircularBuffer

function. To retrieve all valid data from the circular buffer before it is overwritten by new data

the GetNumberNewlmages and Getlmages functions should be used. Alternatively, to retrieve

only the most recent image the GetMostRecentimage function can be used. Finally, to retrieve

the oldest image the GetOldestimage function can be used.

Due to the time needed to shift charge into the shift register, digitize it and operate shutters,
where necessary, the exposure time cannot be set to just any value. For example, the
minimum exposure time depends on many factors including the readout mode, trigger mode
and the digitizing rate. To help the user determine what the actual exposure time will be, the
driver automatically calculates the nearest allowed value that is not less than the user’s
choice. Thus, the actual calculated exposure time used by Andor SDK may be obtained via

GetAcquisitionTimings (this function should be called after the acquisition details have been

fully defined i.e. readout mode, trigger mode etc. have been set).

SECTION 4
Page 36

ANDOR®
A2 ACQUISITION MODES

iCam Run Till Abort

When in this mode of operation (Run Till Abort) some systems have an enhanced trigger mode and
enhanced exposure time capability. To check if these enhanced features are available with your system,
use the function GetCapabilities and check the ulTriggerModes variable for bit 3
(AC_TRIGGERMODE_CONTINUOUS) being set.

The enhanced features include:-
1. Ring of exposures
2. Software Trigger or External trigger
3. Ability to change exposure times during acquisition without aborting the run.
4. External Level Exposure (Bulb) Trigger

These enhanced features are particular useful in situations where you need to acquire data at a fast rate but
not at some predefined rate or when you need to change the exposure time between successive scans. A
good example would be calcium imaging where you need to take 2 images at different wavelengths with

possibly different light levels. With this new mode of operation you would set the experiment up as follows:
1. Configure the camera to acquire an image

SetReadMode, Setimage, SetFrameTransferMode

2. Select Run-till-abort mode SetAcquisitionMode
3. Select Software trigger SetTriggerMode(10)

Confirm with IsTriggerModeAvailable(10)

Set exposure time. SetExposureTime or SetRingExposureTimes

Move filter to first position

o o A

Start acquisition. StartAcquisition

7. Send software Trigger. SendSoftwareTrigger

8. Wait for an acquisition event. See SetDriverEvent
9. Move Filter to next position.

10. Change exposure time. See SetExposureTime

11. Retrieve data see GetAcquiredData

12. Goto step 7

In the procedure outlined above we manually changed the exposure during the sequence. However, we
could have used the new “Ring of exposures” feature to set up the two exposure times in advance and let
the camera automatically switch between them as necessary. see SetRingExposureTimes

There is also the ability to detect the end of the exposure and start reconfiguring the experiment for the next

SECTION 4
Page 37

ANDOR®
A2 ACQUISITION MODES

acquisition while the readout of the first scan is still in progress. See SetAcgStatusEvent.

NOTE: This will also work in External trigger mode SetTriggerMode, with an external trigger source

determining the start of an exposure instead of the SendSoftwareTrigger command. In external

trigger care must be taken to ensure that the external trigger occurs when the camera is ready for it
i.e. the frequency of the external trigger source has to be within the capabilities of the camera with
the current settings.

With External Exposure trigger mode the width of the trigger pulse source will determine the exposure time
and the Ring of Exposures will not be applicable.

See also Acquisition Modes. GetAdjustedRingExposureTimes GetNumberRingExposureTimes

GetRingExposureRange IsTriggerModeAvailable SendSoftwareTrigger SetRingExposureTimes
SetTriggerMode

SECTION 4
Page 38

ANDOR"
AN ACQUISITION MODES

Fast Kinetics

Fast Kinetics is a special readout mode that uses the actual sensor as a temporary storage medium and
allows an extremely fast sequence of images to be captured. The capture sequence is described with the
following steps:

Step 1: both the Image and Storage areas of the sensor are fully cleaned out (the Keep Clean Cycle)

Step 2: the Keep Clean Cycle stops and the acquisition begins. The image builds up on the illuminated section
of the sensor which is typically a small number of rows at the top of the sensor

Step 3: the sensor remains in this state until the exposure time has elapsed, at which point the complete
sensor is clocked vertically by the number of rows specified by the user.

Steps 4 & 5: the process is continued until the number of images stored equals the series length set by the
user.

Step 6: at this point the sequence moves into the readout phase by first vertically shifting the first image to the
bottom row of the sensor. The sensor is then read out in the standard method.

Points to consider for Fast Kinetics Mode:

* Light MUST only be allowed to fall on the specified sub-area. Light falling anywhere else will contaminate the
data.

» The maximum number of images in the sequence is set by the position of the sub-area, the height of the sub-
area and the number of rows in the CCD (Image and Storage area)

» There are no Keep Clean cycles during the acquisition sequence.

« The industry fastest vertical shift speeds of the iXon®™+ enables fastest time resolution with minimal vertical
smearing.

* A range of internal trigger and external trigger options are available for Fast Kinetics Readout.

SECTION 4
Page 39

ANDOR"
AN ACQUISITION MODES

Frame Transfer
Frame transfer is a mode of operation of the chip that is only available if your system contains a Frame
Transfer CCD (FT CCD). It can be switched on for any acquisition mode.

A FT CCD differs from a standard CCD in 2 ways:
e Firstly, a FT CCD contains 2 areas, of approximately equal size (see figure 7 below).

1. The first area is the Image area, this area is at the top and farthest from the readout

register. It is in this area that the CCD is sensitive to light.

2. The second area is the Storage area and sits between the Image area and the readout
register. This area is covered by an opaque mask, usually a metal film, and hence is not
sensitive to light.

e The second way in which a FT CCD differs from a standard CCD is that the Image and the Storage
areas can be shifted independently of each other.

These differences allow a FT CCD to be operated in a unique mode where one image can be read out while
the next image is being acquired. It also allows a FT CCD to be used in imaging mode without a shutter.

Only light falling Image
inthis region ——p» Appa
i5 captured

Storage g Opaque film
Area cavers this region

Readout
Register

Figure 7: Frame Transfer CCD

SECTION 4
Page 40

ANDOR®
A2 ACQUISITION MODES

Figure 8 takes you through the capture sequence for an FT CCD:

i 3 T
Continuously Clean
ccb
(Keep Clean Cycle) H

i "7 i
A A

/l:\\
(I ~— [T
Step 4 Step 5 Step 6

Figure 8: Capture sequence for a Frame Transfer CCD

Step 1: Both Image and Storage areas of the CCD are fully cleaned out. This is known as a Keep Clean
Cycle. Keep Clean Cycles occur continuously to ensure that the camera is always ready to start an

acquisition when required.

Step 2: On receipt of a start acquisition command the CCD stops the Keep Clean Cycle. This allows the
image, photoelectric charge, to build up in the Image area of the CCD. The CCD remains in this state until the

exposure time has elapsed, at which point the readout process starts.

Step 3: In this step the charge, built up in the Image area, is quickly shifted into the Storage area. The time

required to move the charge into the storage area is calculated as follows:
No. of Rows in the Image Area x Vertical Shift Rate.

Once the Image area has been shifted into the storage area the Image area stops vertically shifting and

begins to accumulate charge again, i.e. the next exposure starts.

Step 4: While the Image area is accumulating charge the Storage area is being read out. This readout phase

can take tens of milliseconds to seconds depending on the image size, readout pattern and readout speed.

Step 5 & 6: On completion of the readout, the system will wait until the exposure time has elapsed before
starting the next readout (Step 6).

As the captured image is quickly shifted into the Storage area, a Frame Transfer CCD system can be used

without a mechanical shutter.

NOTES:

e When using Frame Transfer mode, the minimum exposure time for a FT CCD operated in

frame transfer mode is the time taken to readout the image from the storage area.

SECTION 4
Page 41

ANDOR"

-

ACQUISITION MODES

The Accumulation Cycle Time and the Kinetic Cycle Time are fully dependent on the

exposure time and hence cannot be set via the software.

For our Classic CCD range of cameras with frame transfer type sensors the camera can be
operated in External Trigger mode. In this mode there are no keep cleans and the external
trigger starts the "Readout"” phase. The exposure time is the time between external triggers

and hence the user cannot set the exposure or cycle times.

For our iXon range of cameras the external trigger mode is more flexible. With these
cameras the user can define the amount of time between the external trigger event
occurring and the readout starting. This can be useful in those situations where the TTL
trigger occurs before the light event you are trying to capture. As in the Classic Camera
case, no keep cleans are running and the true exposure time is the time between triggers.

However, the exposure window has moved in time by the exposure time.

There is no need for a mechanical shutter. As the exposure time is long compared to the
time required to shift the image into the storage area and therefore, image streaking will be
insignificant.

SECTION 4
Page 42

ANDOR®
A2 ACQUISITION MODES

It is also possible to operate a FT CCD in a non-frame transfer mode. In this standard mode of operation, an

FT CCD acts much like a standard CCD. The capture sequence for this standard mode is illustrated here:

\f:fe jjf@ ;ﬁfé

(r Continuously é& ; (j
Clean CCD

(Keep Clean Cycle)

Step 2 Step 3

\
A \Jg’ Keep Clean & r\(‘r
Cycle

~<— (I ~<— (I <«— (I
Step 4 <— Step 6
Step 5

o Step 1: Both Image and Storage areas of the CCD are fully cleared out (the Keep Clean Cycle).

e Step 2: When an acquisition begins, the CCD stops the Keep Clean Cycle. The image builds up in
the Image area of the CCD. The CCD remains in this state until the exposure time has elapsed, at
which point the readout process starts.

e Step 3: The charge built up in the Image area is quickly shifted, into the Storage area. The time

required to move the charge into the Storage area is the same as in the Frame Transfer mode.

o Step 4: With the image now in the Storage area the captured image is read out. The time taken to

read out the image is again the same as in the Frame Transfer mode.

o Step 5: On completion of the readout, the CCD is again completely cleared, ready to acquire the next
image. The CCD remains in the Keep Clean Cycle until the end of the accumulation or kinetic cycle
time, depending on the acquisition mode, i.e. back to Step 1. As at least one Keep Clean Cycle is
performed between each exposure, the minimum exposure time is no longer set by the time to read
out the image.

As the captured image is quickly shifted into the Storage area, even in non-Frame Transfer mode, the
system may still be used without a mechanical shutter.

SECTION 4
Page 43

ANDOR®
A2 ACQUISITION MODES

NOTES:

e When using an FT CCD as a standard CCD, the Exposure Time, Accumulation Cycle Time

and Kinetic Cycle Time can be set independently.
o The minimum exposure time is not related to the time taken to read out the image.
o External trigger operates as if the CCD was a Non-FT CCD.

o As the captured image is quickly shifted into the storage area, even in non-frame transfer

mode, the system may still be used without a mechanical shutter.

e For short exposure times the image may appear streaked as the time taken to shift the

image area into the storage area may be of similar magnitude.

e Light falling on the Image area while the Storage area is being read out may contaminate
the image in the Storage area due to charge spilling vertically along a column from the
Image area. The slower the readout rate or the shorter the exposure time the greater the

possibility of corruption. To see why this is the case, consider the following situation:

“During a 100us exposure enough light has fallen on a pixel to register 10000 counts, or 100,000
electrons assuming 10e/count. The image is then shifted into the Storage area. To read out the
image, assuming 1000x1000 pixels, it would take approximately 100ms at 10MHXx readout rate. This
means that during the reading out of the image 10 million counts (10000 * 1000) will have been
acquired into the pixel described above. As a pixel saturates at approximately 160,000 electrons this
means that the pixel will over saturated by 60 times. All the excess charge has to go somewhere, and
spreads vertically along the CCD column. As the clocks in the Image area are not actively shifting the
charge, the mobility of the charge will be low and you may not see any effect. However, when you
consider that more than one pixel in any given column could be exposed to 10000 counts per 100us,
the chance of corrupting data is correspondingly increased. Changing the readout rate to 1
microsecond per pixel will greatly decrease the possibility of data corruption due to the reduced time
to read out the image. Reducing the amount of light falling on the CCD and increasing the exposure

time accordingly will also reduce the possibility of data corruption.”

SECTION 4
Page 44

ANDOR®
A2 ACQUISITION MODES

By default the system is set to non-Frame Transfer mode. To set the chip operation mode to Frame Transfer

call:

SetFrameTransferMode(1)

To switch back to non-frame transfer mode call
SetFrameTransferMode(0)

To fully define a Frame Transfer acquisition you will need to supply the following information:
o Exposure Time: Time in seconds during which the CCD collects light prior to readout. Set via the

SetExposureTime function.

e Number of Accumulations: Number of scans you want to add together to create each member
of your kinetic series. The default value of 1 means that each member of the kinetic series will

consist of a single scan. Set via the SetNumberAccumulations function.

e Number in Kinetic Series: Number of scans (or accumulated scans) you specify to be in your

series. Set via the SetNumberKinetics function.

SECTION 4
Page 45

ANDOR"
& A TRIGGERING

SECTION 5 - TRIGGERING

TRIGGER MODES
To assist the user in synchronizing data capture with external events the Andor system supports several

modes of triggering, including
Internal

External

External Start

External Exposure (Bulb)

External FVB EM (only valid for EM Newton models in FVB mode) (needs added)

Software

The trigger mode is set via the SetTriggerMode function. In the remainder of this section we will examine

the modes in detail and give some indication on the appropriate application of each trigger mode.

SECTION 5
Page 46

ANDOR"
* AN TRIGGERING

Internal
In Internal Trigger Mode once an acquisition has been started via the StartAcquisition function the Andor
system determines when data is actually acquired. Before the camera starts the data capture process it
ensures that the CCD is in the appropriate state. This ensures that all acquisitions are identical no matter
how long a time has elapsed since data was last acquired (in fact the camera continually reads out the
CCD to help prevent it from being saturated by light falling on it whilst it is not acquiring data). The camera
also generates all the necessary pulses for shuttering and firing external sources. These pulses are
accessed directly on the camera or via the Auxiliary Connector depending on the model. The Fire Output
defines the position in time during which it is safe to allow a pulsed source to fire. The figure below
illustrates the timing sequence for this mode of operation.

==- -Exposure lime --=
Shutter Output
? : Fire Outout
|-=—':|— Read fime - &==|
Triggers== =1 Fire Fulse ==
Time to Open Time to Close
{Shutter Transfer Time) (Shutter Transfer Time)

Internal Trigger Mode is ideal for situations where you are using ‘continuous wave’ (CW) light sources (an
ordinary room light for instance) and incoming data, for the purposes of your observation, are steady and
unbroken: thus you can begin acquisitions ‘at will’.

You may use Internal Trigger Mode when you are able to send a trigger signal or ‘Fire Pulse’ to a short-
duration, pulsed source (a laser, for example): in this case, initiating the data acquisition process can also
signal the pulsed source to fire.

SECTION 5
Page 47

ANDOR"
& A TRIGGERING

External
In External Trigger Mode once an acquisition has been started via the StartAcquisition function the
camera is placed into a special dumping version of the ‘Keep Clean’ mode, which ensures that the CCD is
not saturated before the external trigger occurs. Once the External Trigger is received the Keep Clean

sequence is stopped and the acquisition is initiated.

The figure below illustrates the timing sequence for this mode of operation:

|< ------------------ Exposure Time. ... > 0
-—E FIRE PULSE DURATION i ——
Vo
| i Shutter Qutput
| B
1 I
i ! FirefGate Output
1 7 =
! L
Keep Clean i
i P
| 1 I
| 1
! ||
| T
i Lo
— N
External Trigger ' T

Time to close

The external trigger can be fed in a number of ways:
o EXT TRIG socket of the I/0 Box (available separately, model #10160)
e Pin 13 of the Auxiliary Connector on the Andor PCI Card

e The head in the case of iDus / iXon.

External Trigger mode is suited to data acquisitions involving a ‘pulsed source’ (e.g. a laser) where the
source does NOT allow a trigger pulse to be sent to it but can generate one. It is possible to increase the
frame rate when in external trigger mode by enabling the Fast External Trigger option, see

SetFastExtTrigger.

When this option is enabled the system will not wait for a Keep Clean cycle to be completed before allowing
an external trigger to initiate an acquisition. This may cause the background to change from one scan to

another.

SECTION 5
Page 48

ANDOR
*AT0Y TRIGGERING

NOTES:

1. If you have a shutter connected, and are using an external trigger, you must ensure that the
shutter is open before the optical signal you want to measure occurs. When a camera is
operated in frame transfer mode the external trigger sequence is different. Please refer to

the camera user manual for a full description.

2. Some cameras may support the iCam technology. If they do, it will be fully operational in
external trigger mode. It is very similar to the Software trigger functionality except that
instead of a Software command instigating the acquisition, an external source does so. All

the benefits described in the Software Trigger section can also be applied to the external

trigger mode. It is set up in the same way with the same modes except that the trigger mode
is set to External.
Frame transfer is also fully functional in iCam External Trigger mode. When Frame Transfer is on it
means that the Arm signal from the camera will be enabled during the current readout at a point to
ensure the next exposure will end after the current readout is finished. This will give the fastest
frame rate and also ensure that the next exposure cannot end until the previous one has been

readout.

SECTION 5
Page 49

ANDOR"
* AN TRIGGERING

External Start
In External Start Trigger Mode, once an acquisition has been started via the StartAcquisition function, the
camera system is placed into an external keep clean mode, which ensures that the CCD is not saturated
before the external trigger occurs. Once the External Trigger is received, the Keep Clean sequence is
stopped and the acquisition is initiated. After the initial acquisition the system will then continue to operate as

in internal trigger mode. The figure below illustrates the timing sequence for this mode of operation.

External trl_gger k_eep Number of vertical clocks
clean running (with .
depends on sub-area height
global clear on 883) L
it Ju Image & Storage area clocks
l [] [] [] '\ Horizontal clocks

1 External Trigger

) [1 [] Fire output

S— _ \

v
Number of repeats set Read phase
. by series length
Exposure time

External Start trigger in Fast Kinetics mode

SECTION 5
Page 50

ANDOR"
& A TRIGGERING

External Exposure
The External Exposure trigger is a mode of operation where the exposure time is fully controlled by the
external trigger input. While the trigger input is high the CCD is accumulating charge in the Image area.
When the external trigger goes low, the accumulated charge is quickly shifted into the Storage area and then

read out in the normal manner. The figures below illustrate the timing sequences for this mode of operation.

Global clear used to
keep image area

_ clean.
Exposure period 1)
Exposure pericd 2
R > g
| L4 O Image area clocks
"\ | O Storage area clocks
] |"'-\ \\ | | [Horizontal clocks
— 4 \ \ —— External trigger
— —— Fire output
' N\
Image area shifted Storage area read
into storage area out phase
Exposure period
defined by external
pulse
Global clear used to Horizontal clocks
keep image area continue running
clean.
Exposure period 1 / Exposure period 2
| ‘#\ / ' Image area clocks
| : \\ | ,"/ [T Storage area clocks
] | "*I\ i | [Horizontal clocks
— P \ Extemal trigger
] P

Fire output
Note: exposure
period starts Note: Falling edge

before the readout MUST occur after
Exposure period has completed. read out completed
defined by external
pulse

External Exposure Trigger in Frame Transfer mode (885 model only)

SECTION 5
Page 51

ANDOR"
* AN TRIGGERING

Idle keep clean

cycle. Waiting for Cycle Time
Start command <

Y

Exposure period

—» -

%] 1]
|

|

Exposure period

Image area clocks

Storage area clocks P L

Horizontal clocks { | \ I |
/ ! \ iz \

External Trigger /,

Fire output

Start command External Keep clean

| hifted running (with global
mage area shifte
Horizontal clocks into storage area clearon 885)

running

Storage area read
outphase

External Exposure Trigger in Non-Frame Transfer mode

Note that not all systems support External Exposure mode. To check if this feature is available with your
system, use the function GetCapabilities and check the ulTriggerModes variable for bit 5
(AC_TRIGGERMODE_EXTERNALEXPOSURE) being set. If this bit is set, please use the function
GetCapabilities again and check the ulFeatures variable for bit 12
(AC_FEATURES_FTEXTERNALEXPOSURE) being set when Frame Transfer mode is used, and bit 13
(AC_FEATURES_KINETICEXTERNALEXPOSURE) being set when Kinetc and Frame Transfer modes are

used together.

SECTION 5
Page 52

ANDOR’
e TRIGGERING

External FVB EM
IExternal FVB EM Trigger Mode is much like operating an acquisition in FVB read mode with EM gain
applied using external trigger with Keep cleans turned off. The difference surrounds the readout of the

collected data and therefore the associated readout time:

When using EM gain a second (EM) register is used to apply the gain to the acquired data, The diagram

below gives a quick overview of the readout process used in both processes.

Imagine a ‘pixel’ at position A.

Normally for the readout cycle to complete, this pixel will have to shift along the shift register and then along

the entire length of the EM Register to C before the next acquisition can begin.

When using FVB EM Trigger Mode however, the EM Register Is used as a temporary storage area and so
the pixel at A no longer needs to travel all the way to C but can stop at position B as this leaves sufficient

space in the shift register for the next acquisition; the data is in effect ‘pipelined’.

Image Area

II
=hift Register

-
EM Register C

Note that not all systems support External FVB EM Trigger mode. To check if this enhanced feature is
available with your system, use the function GetCapabilities and check the ulFeature variable for bit 10
(AC_FEATURES_KEEPCLEANCONTROL) being set.

SECTION 5
Page 53

ANDOR"
& A TRIGGERING

Software
In Software Trigger Mode, once an acquisition has been started via the StartAcquisition function, the user

software determines when data is actually acquired via the SendSoftwareTrigger command. This will give

full control to the user software to ensure that it only requests an acquisition when it is ready. It permits the
highly efficient upload of new exposure times between acquisitions and even allows a pre-load of up to 16
exposures to the camera which will be cycled through with each acquisition. It also permits the user
software to perform certain actions before requesting the next acquisition, such as moving an external

stage or even to change the exposure time.

Note that not all systems support Software Trigger mode. To check if these enhanced features are
available with your system, use the function GetCapabilities and check the ulTriggerModes variable for bit 3
(AC_TRIGGERMODE_CONTINUOUS) being set. If this bit is set and the system is configured with the
following modes:

e Read mode set to image
e Acquisition mode set to Run till abort

e Trigger mode setto 10

Then the SendSoftwareTrigger command will cause the acquisition to be taken.

It is recommended that you call IsTriggerModeAvailable(10) to check if your system is set up to use the

SendSoftwareTrigger function.

If a SendSoftwareTrigger command is issued when the camera is not ready for it, it will be ignored and an

appropriate return code returned.

The extra functionality of pre-loading exposures (up to a maximum of 16) to the camera is configured with

the SetRingExposureTimes command. When the first acquisition is requested (SendSoftwareTrigger) the

camera will take an acquisition with the first exposure in its list. When the second acquisition is requested
the next exposure in the list will be used and so on. When the camera uses the final exposure in its list it

will loop to the beginning again.
Notes on Frame Transfer

e On Frame Transfer systems, the Frame Transfer mode can be activated or deactivated. Currently,
not all cameras can take advantage of the frame transfer operation in Software Trigger mode. By
the nature of frame transfer, an exposure can be occurring when the previous acquisition is being
read out. Currently, no PCI connected cameras can be sent a software trigger when the
camera is reading out.

e USB cameras that support Software trigger can be sent a software trigger command during
readout.

e Frame transfer is fully supported in external trigger mode.

SECTION 5
Page 54

ANDOR"
& A SHIFT SPEEDS

SECTION 6 - SHIFT SPEEDS
The Andor system allows you to set the speed at which charge is shifted horizontally and vertically on the
CCD.

The horizontal and vertical shift speeds are set via the SetHSSpeed and SetVSSpeed functions respectively.

The vertical shift speed is the speed at which each row on the CCD is shifted vertically into the Shift
Register. The number of vertical shift speeds and their actual values are determined via the
GetNumberVSSpeeds and GetVSSpeed functions.

The horizontal shift speed is the speed at which the charge in the shift register is shifted horizontally. It is also
the speed at which the signal is digitized via the on board A/D converters. The number of horizontal shift

speeds and their actual values are determined via the GetNumberHSSpeeds and GetHSSpeed functions.

The horizontal shift speed is dependant on the CCD type and the model of plug-in card in the system. The

shift speeds are always returned fastest first.

The following example retrieves the number of horizontal speeds allowed and their actual values in
microseconds. Finally, it selects the fastest speed as follows:
GetNumberHSSpeeds(0, 0, &a); /first A-D, request data speeds for (I = 0; | < a;/++)

GetHSSpeed(0, 0, I, &speed[l]);
SetHSSpeed(0, 0); /* Fastest speed */

SECTION 6
Page 55

ANDOR"
o ANDY SHUTTER CONTROL

SECTION 7 - SHUTTER CONTROL

SHUTTER MODES
In the sections on Acquisition modes and Readout modes the use of a shutter was highlighted to prevent the
smearing of data. Smearing occurs if light is allowed to fall on to the CCD while the pixel charges are being
binned into the shift register prior to readout. The Andor system has a dedicated shutter control line that

ensures that the shutter is correctly operated at all times.

The SetShutter and SetShutterEx functions provide you with a selection of options that determine when and

how a shutter should be used.

Fully Auto
Fully Auto is the simplest shutter mode because it leaves all shuttering decisions to the Andor system. The
shutter opens and closes automatically in accordance with any acquisition parameters you have set.
This option will automatically provide suitable shuttering for the majority of data acquisitions.

Hold Open
If the shutter mode is set to Hold Open the shutter will be open before, during and after any data acquisition.

Choose this option if you wish to take a series of acquisitions with the shutter opened at all times (e.g. if you

are taking a series of acquisitions with a pulsed source with little or no background illumination).

Hold Closed
If the shutter mode is set to Hold Close the shutter remains closed before, during and after any data
acquisition. Choose this option if you wish to take an acquisition in darkness (e.g. if you are acquiring a

background scan).

SECTION 7
Page 56

ANDOR"
o ANDY SHUTTER CONTROL

SHUTTER TYPE
The shutter control line is a TTL compatible pulse, which can be either active high or active low to allow the

control of an external shutter.

NOTE: If the camera has an internal shutter (the function IsinternalMechanicalShutter can be used to

test this) but cannot control the internal and external shutter independently (check the capability
AC FEATURES SHUTTEREX) then the TTL pulse will always be active high.

o If you set the shutter type to TTL High with SetShutter or SetShutterEx, the Andor SDK will cause
the output voltage to go ‘high’ to open the shutter.

o If you set the shutter type to TTL Low with SetShutter or SetShutterEx, the Andor SDK will cause the

output voltage to go ‘low’ to open the shutter.

For Classic systems this pulse will be sent through the Andor PCI card. For other systems this pulse will

be sent through the shutter SMB connector on the camera.

The documentation supplied by the shutter manufacturer will advise the user whether your shutter opens at a

high or a low TTL level.
NOTE: With Full Vertical Binning there is no shutter pulse. The shutter will always be in the Open

position. See Shutter Mode on the previous page and Shutter Transfer Time on the next page.

The 1/0 Box also contains a 30V shutter jack socket, which produces the same signal as the TTL output but

is always high to open (see User Guide for further details). NOTE: Only applicable to classic systems.

For iXon+ cameras that have independent shutter control (capability AC_FEATURES SHUTTEREX) we can

control the TTL type and mode of the internal (if available) and external shutter independently using function

SetShutterEx, The external shutter signal will be output through the Shutter SMB port on the rear of the

camera. The internal and external shutters will have the same opening and closing times.

SECTION 7
Page 57

ANDOR"
o ANDY SHUTTER CONTROL

SHUTTER TRANSFER TIME
Mechanical shutters take a finite time to open or close. This is sometimes called the Shutter Transfer Time
and can be of the order of tens to hundreds of milliseconds. The Transfer Time is important for many

reasons.

Firstly, if your shutter takes 40ms to open and you specify an exposure time of 20ms then the shutter will
simply not get the time to open fully. Similarly, if you are triggering a pulse light source via the Fire pulse then
you will want to ensure that the Fire pulse goes high only when the shutter is opened. Also, if you are
acquiring data in an imaging mode (Multi-Track, Random-Track, Single-Track or Image), with either a
continuous light source or a large high background illumination with a pulsed source, the shutter must be fully

closed before readout begins. Otherwise, a smeared image will result.

The SetShutter and SetShutterEx functions allow you to specify a Transfer Time for both opening and closing

the shutter.

The time you specify for the shutter opening time will affect the minimum exposure time you can set via the

SetExposureTime function. For example, if you set the opening time to Oms then the minimum exposure time

will be set to the amount of time needed to clean the shift register on the CCD. However, if the opening time
is set to a larger value than is needed to clean the shift register, say 50ms, then the minimum exposure time

will be 51ms i.e. 1ms more than the time needed to open the shutter.

The SetExposureTime is in effect setting the length of time the shutter output will be in the ‘open’ state. The

rising edge of the Fire output signal follows the start of the shutter open state after a delay, equal to the value

you set for the opening time via the SetShutter functions.

Andor SDK also automatically adds the Transfer Time for the closing of the shutter to the end of the
acquisition sequence, introducing an appropriate delay between the start of the shutter ‘closed’ state and the
commencement of the data being read out. This value is set via the closing time parameter in the_SetShutter

and SetShutterEx functions.

Figures 10 & 11 on the next page show the timing sequence for both Internal and External triggering modes.

SECTION 7
Page 58

ANDOR"
*° AT SHUTTER CONTROL

SIGNALS & DELATYS

i | Shutter Qutput

| | Fire Qutput

. Do ; Read Time
Triggersi j«---Fire Pulse Duration---»|
T —i
Time to Open Time to Close

(Shutter Transfer Time) (Shutter Transfer Time)

Figure 9: Timing diagram for shutter and fire pulses in internal trigger mode

- Fire Pulse Duration ----- +|
[| Shutter Qutput
| Exposure Time | Fire/Gate Output
Keep Clean
] PO
: Read Time
Extermal Trigger+| :
—
Time to Close

Figure 10: Timing diagram for shutter and fire pulses in external trigger mode
NOTES:

1. In the case of external triggering, the external trigger pulse, the shutter pulse and the fire
pulse are all coincident. If you are using a shutter and externally triggering the Andor
system then the external trigger must be pulsed early enough to ensure that the shutter is
fully opened before the light pulse arrives. Please consult the documentation supplied by
the shutter manufacturer to get an indication of the transfer time you can expect from your

particular shutter.

2. If you do not have a shutter connected, set the Closing Time and Opening Time parameters
to 0. Setting these parameters to any other value will insert extra delays into cycle time
calculations.

SECTION 7
Page 59

'AN DOR"
& ormoiooy TEMPERATURE CONTROL

SECTION 8 - TEMPERATURE CONTROL

The Andor camera incorporates a CCD, which is fabricated using a process known as Multi-Pin Phasing

(MPP). As a result the dark current is reduced by a factor of approximately 100 compared to standard devices
at the same temperature. To reduce the dark current even further Andor SDK allows you to cool and monitor

the CCD temperature through a number of functions. The desired temperature is set via the SetTemperature

function whilst the actual cooling mechanism is switched On and Off via the CoolerON and CoolerOFF

functions.

The table below shows a typical example of temperatures attainable with the various systems available, with
and without the assistance of water-cooling. Please refer to the specification supplied with your particular

model for full details. The possible temperature range available to the SetTemperature function can be

obtained using the GetTemperatureRange function.

Moderate Cooling High Cooling Ultra-High Cooling
Air Water Air Water Air Water
-5°C -25°C -30°C -55°C -75°C -90°C

NOTES:

1. Because rapid cooling and heating can cause thermal stresses in the CCD the rate of cooling

and heating is regulated to be <10°C per minute on some systems.

2. While the system is cooling, or heating, you can acquire data but the ‘Background Level’ WILL

change with temperature. The current temperature can be read using the GetTemperature

function. This function also returns the status of any cooling process including whether the
cooler is ON or OFF.

3. If the GetTemperature function returns the DRV_TEMP_STABILIZED status flag then the

temperature is within 3°C of the set temperature and the microprocessor is no LONGER
regulating the cooling rate. At this point the temperature regulation is controlled via analog

electronics.

SECTION 8
Page 60

ANDOR"
& A SPECIAL GUIDES

SECTION 9 - SPECIAL GUIDES

CONTROLLING MULTIPLE CAMERAS
Using the SDK It is possible to control multiple Andor cameras. The following SDK functions permit the
selection and use of one Andor camera at a time.

e GetAvailableCameras

o« GetCameraHandle

o« SetCurrentCamera

« GetCurrentCamera

« Initialize

*NOTE: If only one camera is available it is not necessary to use any of these functions since that

camera will be selected by default.

A maximum of eight cameras can be controlled by the SDK. This can be a combination of USB and PCI

cameras but the maximum number of PCl cameras that can be supported is two.

While using more than one camera the other SDK functions are used in the normal way. When a function is
called it only affects the currently selected camera and is not sent to all cameras. This allows each camera to
be programmed individually but it also means that each camera has to be individually initialized and shut

down.

Another aspect of this control method is that cameras cannot be simultaneously triggered using the software -

if simultaneous triggering is required then external triggers should be used.

SECTION 9
Page 61

ANDOR"
& A SPECIAL GUIDES

USING MULTIPLE CAMERA FUNCTIONS

The GetAvailableCameras function is used to return the number of Andor cameras available. A handle for

each camera is obtained using the GetCameraHandle function (this handle should be stored for the lifetime of

the application).

Any of the available cameras can then be selected by calling the SetCurrentCamera function and passing in

the camera handle. Once a camera has been selected any other SDK function can be called as normal but it

will only apply to the selected camera. Initialize must be called once for each camera that you wish to use. At

any stage the GetCurrentCamera function can be called and it will return the handle of the currently selected

camera.

NOTE:

1. It is not possible to unplug any cameras or plug in new ones during the lifetime of the
application.

2. Itis not possible to trigger cameras simultaneously using software. To simultaneously trigger
more than one camera external triggers can be used or alternatively one camera can be
triggered by software and the fire pulse from this camera used to trigger the others.

3. Currently, if only one camera is installed there is no need to obtain the camera handle or select

it since this camera will be used by default.

SECTION 9
Page 62

ANDOR"
S gt SPECIAL GUIDES

This example pseudo code demonstrates how to use the functions relating to the operation of multiple

cameras:

T

S Maltiple Camera Pseudo Code Exsuple

ff Moce: This=s code does not compile

o

S Thi=s exawple demohstrates how Lo -

F4 1. Determine the rmamber of cameras awailahle
Ff E. btain a handle for each camera

FF 3. Initialize each camera

FF 4. Perform a single scan acoguisition with each camera
f4 bl Check which camera is ourrently selected

FF 6. Bl dotm each camera

@i

ff Btart of program

£ Determine the rumber of cameras awvailahkhle
Getlivailabhl eCaneras (Mumber 0fCameras)

FF Allocate memory for MamberOfCawmeras handles
lory CameraHapdl es [Muanber0 fCamnera=]

£ Dbtain a handle for esach camera and initialize

for {(index = 0 to NamberOfCamsras-1)

{
GetCameraH=andl e(index, CameraHandl es [index])
SetCurrentlCaneral CaneraHandles[index])
Initialized. ..}

}

S Bet an exposure time for each camera and start the acoqaisition
for (index = 0 to NMumberOfCameras-1}
{

SetCurrentlCamers| CanseraHandles[index])
Sethomuisitiontodeil)
SetExposareTime(. ..}

A by obher camera settings
Starticouisitioni)

A WMait until acquisition has findshed

}

£ Check which camera is currently selected
1oty UnkowmCamne raHandl e
GetCur rentCane ra (ThimowmCamne raHapndle)

£F Bt dowm each camera

for (index = 0 to NamberOfCamsras-1)

{
SetlCurrentlCameral CameraHandles[index])
Shoat Domaza))

}

F#4 End of program

Figure 11: Example of Multiple Camera Pseudo Code

S D K SECTION 9

Page 63

ANDOR"
& A SPECIAL GUIDES

DATA RETRIEVAL METHODS

How to determine when new data is available
There are a wide of range of functions available for retrieving data from the camera. Deciding which functions
should be used depends on whether the data will be retrieved during an acquisition or once the acquisition is

complete. See Retrieving Image Data

For certain cases it may be useful to know what stage an acquisition is at. The GetStatus function can be
used to get the current status of the acquisition. It will return information such as, the acquisition is in

progress or it is finished. See GetStatus for full list of return information.

Another way to know if an acquisition is finished is with the WaitForAcquisition function. When an acquisition

is started, the WaitForAcquisition function can be called, it does not return from this function until the

acquisition is finished. The function can be cancelled by calling the CancelWait function although this will

require the user application to be multi-threaded.

P

A WaitFordcguisition Pseudo Code Example
A Hote: This code does not compile

£

A4 Btart of program

A Tritiaglize camera
Initialize(...])

A5 Start the Fcguisition
Starticguisition()

A4 Wait for the gcguisition to complete
WaitForlcquisitioni)

A Retrieve data

A5 Shut down camera
ShutDown ()

A End of program

Figure 12: Example of WaitForAcquisition Pseudo Code

SECTION 9
Page 64

ANDOR"
& A SPECIAL GUIDES

The SetDriverEvent function can be used in conjunction with event handles. If an event is created using the
WIN32 CreateEvent function and passed to the SDK using the SetDriverEvent function an event handle now

exists which the SDK can use to inform the application that something has occurred.

To ensure that the event has been set by a new image arriving and not something else (e.g. temperature
change) the GetTotalNumberlmagesAcquired function can be used. This function will return the total number

of images acquired and transferred to the Andor SDK, and which are now available to be retrieved by the

user.(see section Retrieving Image Data). Comparing the new value to a previously stored one is an effective

way of checking that there are new images available.

s

A BetDriverEvent DPseudo Code Example
A4 HNote: This code deoes not compile
A

S Btart of program

A ITnitialize camera
Initialize(...]

A4 Create an event handle
HAMDLE hEwvent = CreateEventi()

A4 Set the driver event
JetDriverEvent (hEwvent)

S Btart the dcgquisition
Startlicoguisition()

S Wait for the acguisition to complete
WaitForSingleChiject ()

A4 Retrpieve data

A4 Bhut down camerad
ShutDowni)

A4 End of program

Figure 13: Example of SetDriverEvent Pseudo Code

SECTION 9
Page 65

ANDOR"
& A SPECIAL GUIDES

Retrieving Image Data
Depending on the image settings there may be more than one image available after each notification. It is
important to ensure that all of the new images are retrieved if they are required. The recommended functions

for retrieving image data are as follows:

e GetOldestimage

¢ GetMostRecentlmage

o Getlmages
e GetAcquiredData

GetOldestimage, GetMostRecentimage, and Getlmages are used to retrieve data from an internal 48MB

circular buffer that is written to by all acquisition modes. They are particularly useful for retrieving data while
an acquisition is taking place especially during run till abort mode but can also be used when the acquisition
is complete. For all acquisition modes (except Run Till Abort) the GetAcquiredData function can be used to

retrieve all the acquired data once the acquisition is complete.

NOTE: All functions mentioned here refer to retrieving 32-bit data but there are also 16-bit versions of

these functions available.

GetOldestimage will retrieve the oldest available image from the circular buffer. Once the oldest image has

been retrieved it is no longer available and calling GetOldestimage again will retrieve the next image. This is

a useful function for retrieving a number of images. For example if there are 5 new images available, calling

GetOldestimage 5 times will retrieve them all. GetMostRecentimage will retrieve the most recent image from

the circular buffer. This provides a method for displaying the most recent image on screen while the

acquisition is in progress (should be used in conjunction with the GetNumberNewlmages function).

The GetNumberNewlmages function returns the start and end index of the images that are available in the

circular buffer. These indexes should be used along with the Getlmages function to retrieve all of the

available data. This provides an effective way of retrieving a number of new images in one function call.

GetAcquiredData should be used once the acquisition is complete to retrieve all the data from the series.

This could be a single scan or an entire kinetic series.

SECTION 9
Page 66

ANDOR"
& A SPECIAL GUIDES

DETERMINING CAMERA CAPABILITIES
Retrieving capabilities from the camera

It is important to be able to determine the capabilities of the camera. This allows the user to take the full

benefit of all the features available.
There are a number of functions available which can be used to obtain this information and these can be found

in the following areas of this section.
e Horizontal Pixel Shift Capabilities
o Vertical Pixel Shift Capabilities
e Other Capabilities

SECTION 9
Page 67

ANDOR"
& A SPECIAL GUIDES

Horizontal Pixel Shift Capabilities

Depending on the camera type and model there will be variations in the number of A/D channels, the number
of Output Amplifiers, the number & range of Horizontal Shift Speeds and the number & range of Pre-Amp

Gains. The first step in this process is to determine the following:

e Number of A/D channels using the GetNumberADChannels function

o Number of output amplifiers using the GetNumberAmp function

e Maximum number of pre-amp gains using the GetNumberPreAmpGains function

NOTE: Not all PRE-AMP gains are available for each horizontal shift speed. The

IsPreAmpGainAvailable function is used to determine which are valid for a particular horizontal shift

speed and this will be explained later.
The bit depth of each A/D channel can be found using the GetBitDepth function.

Once this information has been obtained the next step is to find the number of available horizontal shift

speeds for each output amplifier on each A/D channel using the GetNumberHSSpeeds function. Following

this the value of each horizontal shift speed can be found using the GetHSSpeed function.

Each horizontal shift speed has an associated number of valid pre-amp gains. The next step is to obtain the

value of each pre-amp gain using the GetPreAmpGain function. Not all pre-amp gains are available for each

horizontal shift speed so using the IsPreAmpGainAvailable function it is possible to check which pre-amp

gains are valid. Once the information has been retrieved the relevant selections can be made using the

functions that follow:
e SetADChannel

e SetOutputAmplifier

e SetHSSpeed

e SetPreAmpGain

SECTION 9
Page 68

ANDOR"
* AN SPECIAL GUIDES

An example of the pseudo code for this capability is shown here:

o
S Horizontcal Pixel S5hiftc Pseudo Code Exauple
£ Noce: This code does not compile

wi
£ Btart of program

FFf Indtialize camera
Inditialize(.._}

lorng NMmCharmels, Muminp, MunPrelmpGadns
lotwy BitDepth, NuwmHSpeeds, IsPreluplivailable
float HSSpeed

Getlimber AL Charnel s (MumCharmel=s)
GetMimber Anp (Mum b)
Getlhmber PrelupGains (anPr ebupGains)

for (i = 0 to MamChantels-1)
{
CetEBitDepthii, EBEitDepth)
for (3 = 0 o Mmimp-1)
{
GetManherHS2peaed=s (i, j, MmHipeads)
for (k = 0 to MmHSpeads)
{
CetHSSpeadii, j, k, H3Bpeed)
for (m = 0 to MmPrelfmpGains-1)
1
GetPrelimpbainim, PrelumpGain)
IsPrefupGainiwvailableli, j, k, m, IsPrelimplwvailahle)
4
I
I
I

A Bt doyn camera
Shod-Donmad)

£ End of program

Figure 14: Example of Horizontal Pixel Shift Pseudo Code

SECTION 9
Page 69

ANDOR"
& A SPECIAL GUIDES

Vertical Pixel Shift Capabilities
Depending on the camera type and model there will be variations in the number of Vertical Shift Speeds
available.

The first step in this process is to determine the number of vertical shift speeds using the

GetNumberVSSpeeds function. Following this the value of each vertical shift speed can be found using the

GetVSSpeed function.

Since the camera may be capable of operating at more than one vertical shift speed the

GetFastestRecommendedVSSpeed function will return the index and the value of the fastest recommended

speed available. The very high vertical shift speeds may require an increase in the amplitude of the vertical

clock voltage using the SetVSAmplitude function.

The GetFastestRecommendedVSSpeed function returns the fastest speed which does not require the vertical

clock voltage to be adjusted. If the fastest recommended speed is selected the vertical clock voltage should
be set as normal.

NOTE: Exercise caution when increasing the amplitude of the Vertical Clock voltage, since higher
clocking voltages may result in increased Clock-Induced Charge in your signal. In general, only the

very highest speeds are likely to benefit from increased vertical clock voltage amplitude.
Once the information has been retrieved the relevant selections can be made using these functions:

o SetVSSpeed
e SetVSAmplitude

An example of the pseudo code for this capability is shown in figure 15:

o
Ff Wertical Pixel Shifr Fseudo Code Example
Ff Hoce: This=s code does not compile

wi
f£f Btart of program

£ Initialize camera
Indtializel...)

long MWW 2Speeds, PecommendedisSpeedTndex
float WaSpeed

Getlhmber Vs Speeds (hmiFE Speeds)
GetFastestPecommendediE Speed (Pecommendedi 38 peadlndex, WESpeed)

for (i = 0 to MamChannels-1)

{
GetWiipeadii, Tiipeed)

}

£ Bkt dowm camera
Sha-Dowmyl)

F4 End of program

Figure 15: Example of vertical pixel shift pseudo code

SECTION 9
Page 70

ANDOR"
& A SPECIAL GUIDES

Other Capabilities

Other information about the camera can be obtained using the following functions:

e GetCapabilities

e IsinternalMechanicalShutter

The GetCapabilities function populates an AndorCapabilities structure with information associated with
the camera. Afterwards this structure can be used to determine details about the camera e.g. supported

acquisition modes, supported trigger types.

The IsInternalMechanicalShutter function is used to determine if the camera has an internal mechanical

shutter.

SECTION 9
Page 71

ANDOR"
& A SPECIAL GUIDES

iCam
iCam technology is a combined firmware and software innovation that has been incorporated into Andor’s
EMCCD imaging cameras. iCam offers enhanced performance for acquisitions whether software triggered or
hardware (externally) triggered, with absolute minimal overheads. It allows for faster frame rates in software
by dedicated timing patterns that eliminate unnecessary overhead times. This, alongside the bi-directional
communication between camera and PC, facilitates unparalleled synchronization with other peripheral
equipment. A ring mode offers the capacity to use up to 16 different timing patterns uploaded into the camera

head, thus trigger events can yield virtually instantaneous switching between exposure channels.

This new functionality has been added to the Run Till Abort acquisition mode and currently will only operate
with Image readout mode. Cameras must contain a suitable firmware and if a PCI card is being used it must
be a CCI-23 card and have a suitable firmware loaded. If you are unsure if your current Hardware is iCam

compatible please download the ‘iCam compatibility checker’ from andor.com.

It will operate in Software and External trigger mode, with both Frame Transfer and Non Frame Transfer

mode.

The idea behind this is that the SDK puts the camera into a ‘heightened state of readiness’ and when a

trigger comes (either software or hardware) the acquisition can be taken immediately.

If you hardware is compatible and needs to be upgraded please contact productsupport@andor.com for a

further application which will upgrade your system.

SECTION 9
Page 72

mailto:productsupport@andor.com

ANDOR"
& A EXAMPLES

SECTION 10 - EXAMPLES

INTRODUCTION
We present here a number of examples of controlling Andor SDK to acquire data. Source code for each
example can be found on the disk. Each example is presented in three different languages, Visual Basic,
LabVIEW and C.

The examples were devised to demonstrate the wide versatility and range of the data acquisition
mechanisms available with Andor SDK. The examples are all based on variations of the flowchart
described on the following pages.

The flowchart is a basic demonstration of how to set up and control the Andor system to acquire data with
the appropriate Andor SDK commands located just to the right of the flowchart.

The flowchart is divided into three sections, the first deals with the initialization of the system and controlling
the sensor temperature. The second section deals with the data acquisition process while the third
illustrates the proper shutdown procedure.

NOTE: Do not have more than one example or other SDK software (e.g. Andor Solis™, iQ™)
running at the same time.

SECTION 10
Page 73

ANDOR
*AT0Y EXAMPLES

RUNNING THE EXAMPLES

C
The C examples are supplied as ready to run executable files (both 32-bit and 64-bit) and with complete
source code. The code has been tested with Microsoft VC++ 5.0 and Borland Developer Studio 2006.

You are free to modify the example source code in the “C” directory to be compatible with your own compiler.
In order to compile your own C or C++ programs you will need the following files:

e ATMCD32D.H C Header File

e ATMCD32D.LIB/ ATMCDG64D.LIB Import Library (Borland compatible)

o« ATMCD32M.LIB/ ATMCD64M.LIB Import Library (Microsoft compatible)

LabVIEW
The LabVIEW examples are contained in the sub-directory “LabVIEW” of the installation directory. The

LabVIEW examples are in the form of VI's and must be run through LabVIEW 7.0 or higher (32-bit).

Visual Basic
The Visual Basic examples are contained in the sub-directory VBasic of the installation directory. Each

example contains all the source code, forms and project files to re-build executable files.

Each of the Visual Basic examples comes with a ready to run executable file.
When building you own projects you must include the file ATMCD32D.BAS. This file contains the Andor SDK
function prototypes for interfacing with the dynamic link library ATMCD32D.DLL

NOTE: To run any of the examples you will need the following files:

e ATMCD32D.DLL / ATMCD64D.DLL (depending on system)

o DETECTOR.INI: Contains initialization information (not required on iDus, iXon or Newton systems)

SECTION 10
Page 74

ANDOR"

EXAMPLES

FLOW CHART OF THE FUNCTION CALLS NEEDED TO CONTROL ANDOR CAMERA

Initizlize
1 InstaSpec
System

h

2 Swvitch OR
Coaler

I

3 fanitar
__________ > Tempersture
Drop

i

Hasz

pmmmm— i m —m — =

Stabilized 7

Temperature

Initialize(), GetDetectar(), GetHardwareersion()
GethumbervVSSpeeds(), GetvSSpeed()
GetSoftwaretersion() GetHSSpeed()
GetMumberHSSpeed()

GetTemperatureRange()
SetTemperature()
CoolerON()

Get Temperature ()

1. The application initializes the camera then obtains information relating to the capabilities of the system.

NOTE: The Andor SDK takes several seconds to Auto-Calibrate the on-board A/D converter

whenever the Initialize function is called.

2. The CCD sensor’s operating temperature is set to some value within the allowed temperature range (e.g.

-2 °C), and the cooler is switched on.

3 - 4. The current temperature is periodically monitored to check if the temperature has stabilized to the set

value. The temperature can take several minutes to stabilize and with the appropriate programming

techniques the user should be able to set up other tasks, as illustrated in the C examples.

Once the CCD sensor temperature has stabilized you can start acquiring data.

Page 75

SECTION 10

ANDOR"
& A EXAMPLES

(from d) i SetdcquisitionMode(), SetReadouthode(),
SetShutter(), SetExposureTime(),

Setup SetTriggerMode(), SetAccumulationCyoyletime(),
aeguistion | Sethumberaccumulations(), Sethumberkinetics(),
Parameters | SetkineticCycletimel), GetAcquisiiontimings(),
SetHSSpeed(), Setv'SSpeed()

¥
Start Data
Acouisition

StartAcquisition()

Y

fdanitar Data
7 - ™ acouistion | SEEStAtUS()

NO |z Data
8 oo HLequisition
complete 7

GetAcquiredDatal)

YES el

ey
Bequiition @

NO | 11

5. The acquisition parameters are programmed to match the specifications of the user, e.g. acquisition

mode (single scan etc.), readout mode (full vertical binning etc.) and the trigger mode (Internal etc.).

6. You are now ready to start an acquisition.

7 - 8. The current acquisition status is periodically monitored to check if the data acquisition is complete.
9. After a successful data acquisition the data is transferred from the Andor driver into the application.
10. At this point the user may choose to capture a new acquisition or not.

11. Yes: capture a new scan. The user may decide to alter the acquisition set-up (e.g. change the exposure

time) or simply use the current parameters.

SECTION 10
Page 76

ANDOR"
& A EXAMPLES

from 11) l

12 | Bwich OFF
Gl CoolerCOFF()

¥
13| ®anitar

=== » Temperatute | (SetTemperature()
Fize

HO

____...____
-

Has ternpetature
rizen sufficierty ¥

-

Claze Do
15 Systern shutDown()
¥
Close
16 Lpplication

12. When the user has completely finished acquiring data the shutdown procedure is started. The cooler is
switched off. It is important to control both the heating and cooling rates of the CCD sensor otherwise the
temperature gradients may damage the sensor. Thus it is highly recommended that the user uses the

correct exiting procedure rather than, for example, simply switching off the computer.

13 — 14. The current temperature is periodically monitored to check if the temperature has risen to a

sufficiently high value.

15. For Classic & ICCD systems wait until the temperature has risen above -20°C. The user may now shut

down the Andor SDK system.

16. The program releases any memory still being used and exits the application.

SECTION 10
Page 77

ANDOR"
& A EXAMPLES

Cooler
This example is different from all the previous examples in that its main goal is not to acquire data but to
demonstrate the proper use of the cooling capabilities of the Andor SDK System. It includes the taking of a

single FVB scan for completeness. This example is an expanded version of Example 1.

DDG™
The digital delay generator for iStar systems is demonstrated by this example. The user can control the gate
times, gain level and integrate on chip parameters. The acquisition is set to a kinetic series of full vertically
binned scans.

EMCCD
This example demonstrates acquisitions with an EMCCD detector, and in particular the Gain setting that can

be applied to these devices

Events
The events example shows the alternative method of handling acquisitions, using Windows events to signal
when the acquisition is complete instead of timer polling used in other examples. A kinetic series of full
vertically binned scans is taken and the events signalled by the Andor SDK are indicated in the status window

as they arrive

Frame Transfer
The frame transfer example is similar to the kinetics example, except that the accumulate cycle and kinetic

series times can not be set independently, as they rely solely on the exposure time setting

FVB
This example illustrates the simplest mode of operation of the Andor system. It initializes the system and then
acquires a single spectrum using the Full Vertical Binning readout mode. The user is given the ability to specify
the trigger mode and exposure time (as the examples progress the user is given more and more options to
set).
Image
This example is slightly more complicated than the first example with the addition of a shutter. In general a
shutter must be used whenever the readout mode is anything other than Full Vertical Binning. For this example
we will use the readout mode Image with the horizontal and vertical binning set to 1. The user is given the
ability to specify the exposure time, trigger mode and some of the shutter details.
Image Binning
This example shows how to acquire single images with possible binning. The sub image to be read can be

entered and the binning for each dimension can be set.

Kinetics/Accumulate
For this example we go back to the Full Vertical Binning readout mode as in example 1. However, we
introduce a new acquisition mode, Kinetic Series. Kinetic Series is the most complex acquisition mode with up
to 5 parameters to be set. The user is given the ability to specify the number of accumulations per scan,

accumulation cycle time, number of scans in Kinetic series, Kinetic cycle time and the exposure time.

SECTION 10
Page 78

ANDOR"
& A EXAMPLES

Kinetic Image

This example is a combination of the imaging and kinetic examples.

Multi-Track
This example illustrates the use of the Multi-Track readout mode. The acquisition mode is constrained to
Single Scan and uses internal triggering. As this example uses imaging we again use a shutter. The user has
the ability to specify both the shutter and Multi-Track parameters

Random-Track
This example is similar to Multi-Track readout mode as described above. The user has the ability to
add/select their own track parameters, i.e. Start & Stop, number of tracks (Maximum of 20 tracks for iDus) and
they can also select the shutter parameters.
Spool
This example demonstrates the use of spooling to disk. Spooling can be enabled or disabled and the stem of

the created spool files can be entered. The acquisition mode is set to Kinetic Series

Continuous mode

This is a simple example to demonstrate the iCam functionality that some cameras may have.

SECTION 10
Page 79

ANDOR"
o ANDY FUNCTIONS

SECTION 11 - FUNCTIONS

This section provides details of the various Functions available.

AbortAcquisition
unsigned int WINAPI AbortAcquisition(void)

Description This function aborts the current acquisition if one is active.
Parameters NONE
Return unsigned int
DRV_SUCCESS Acquisition aborted.
DRV_NOT_INITIALIZED System not initialized.
DRV_IDLE The system is not currently acquiring.
DRV_VXDNOTINSTALLED VxD not loaded.
DRV_ERROR_ACK Unable to communicate with card.
See also GetStatus StartAcquisition
CancelWait
unsigned int WINAPI CancelWait(void)
Description This function restarts a thread which is sleeping within the WaitForAcquisition function.

The sleeping thread will return from WaitForAcquisition with a value not equal to
DRV_SUCCESS.

Parameters NONE
Return unsigned int

DRV_SUCCESS Thread restarted successfully.
See also WaitForAcquisition

SECTION 11
Page 80

ANDOR"
& A FUNCTIONS

CoolerOFF
unsigned int WINAPI CoolerOFF(void)

Description Switches OFF the cooling. The rate of temperature change is controlled in some models

until the temperature reaches 0°. Control is returned immediately to the calling

application.
Parameters NONE
Return unsigned int
DRV_SUCCESS Temperature controller switched OFF.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_NOT_SUPPORTED Camera does not support switching cooler off.
See also CoolerON, SetTemperature, GetTemperature, GetTemperatureF,

GetTemperatureRange, GetStatus

NOTE: Not available on Luca R cameras — always cooled to -20.
NOTE: (Classic & ICCD only)

1. When the temperature control is switched off the temperature of the sensor is gradually

raised to 0°C to ensure no thermal stresses are set up in the sensor.

2. When closing down the program via ShutDown you must ensure that the temperature of the
detector is above -20°C, otherwise calling ShutDown while the detector is still cooled will
cause the temperature to rise faster than certified.

SECTION 11
Page 81

ANDOR"
& A FUNCTIONS

CoolerON
unsigned int WINAPI CoolerON(void)

Description Switches ON the cooling. On some systems the rate of temperature change is controlled
until the temperature is within 3° of the set value. Control is returned immediately to the

calling application.

Parameters NONE
Return unsigned int
DRV_SUCCESS Temperature controller switched ON.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
See also CoolerOFF, SetTemperature, GetTemperature, GetTemperatureF,

GetTemperatureRange, GetStatus

NOTE:

The temperature to which the detector will be cooled is set via SetTemperature. The temperature

stabilization is controlled via hardware, and the current temperature can be obtained via

GetTemperature. The temperature of the sensor is gradually brought to the desired temperature to

ensure no thermal stresses are set up in the sensor.

Can be called for certain systems during an acquisition. This can be tested for using
GetCapabilities.

SECTION 11
Page 82

ANDOR"

FUNCTIONS

Demosaiclmage

unsigned int WINAPI Demosaiclmage(WORD* grey, WORD* red, WORD* green, WORD* blue,

ColorDemosaicinfo* info)

Description

Parameters

Return

See also

For colour sensors only

Demosaics an image taken with a CYMG CCD into RGB using the parameters stored in
info. Below is the ColorDemosaiclnfo structure definition and a description of its
members:

typedef struct COLORDEMOSAICINFO {

int iX; // Number of X pixels. Must be >2.

intiY; // Number of Y pixels. Must be >2.

int iAlgorithm; // Algorithm to demosaic image.

int iXPhase; // First pixel in data (Cyan or Yellow/Magenta or Green).

int iYPhase; // First pixel in data (Cyan or Yellow/Magenta or Green).

int iBackground; // Background to remove from raw data when demosaicing.
} ColorDemosaiclnfo;

e iX and iY are the image dimensions. The number of elements in the input red,
green and blue arrays is iX x Y.

e iAlgorithm sets the algorithm to use: 0 for a 2x2 matrix demosaic algorithm or 1
for a 3x3 one.

The CYMG CCD pattern can be broken into cells of 2x4 pixels, e.g.:

e iXPhase and iYPhase store what colour is the bottom-left pixel.

« iBackground sets the numerical value to be removed from every pixel in the
input image before demosaicing is done.

WORD* grey: pointer to image to demosaic

WORD* red: pointer to the red plane storage allocated by the user.
WORD?* green: pointer to the green plane storage allocated by the user.
WORD* blue: pointer to the blue plane storage allocated by the user.

ColorDemosaicInfo* info: pointer to demosaic information structure.

unsigned int
DRV_SUCCESS Image demosaiced
DRV_P1INVALID Invalid pointer (i.e. NULL).
DRV_P2INVALID Invalid pointer (i.e. NULL).
DRV_P3INVALID Invalid pointer (i.e. NULL).
DRV_P4INVALID Invalid pointer (i.e. NULL).
DRV_P5INVALID One or more parameters in info is out of range

GetMostRecentColorlmage 16, WhiteBalance

SECTION 11
Page 83

ANDOR"

FUNCTIONS

EnableKeepCleans

unsigned int WINAPI EnableKeepCleans(void)

Description This function is only available on certain cameras operating in FVB external trigger
mode. It determines if the camera keep clean cycle will run between acquisitions.
When keep cleans are disabled in this way the exposure time is effectively the exposure
time between triggers.
The Keep Clean cycle is enabled by default.
The feature capability AC_FEATURES KEEPCLEANCONTROL determines if this
function can be called for the camera.
Parameters int mode: mode
0 OFF
1 ON
Return unsigned int
DRV_SUCCESS Keep clean cycle mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_NOT_AVAILABLE Feature not available.
See also GetCapabilities
NOTE: Currently only available on Newton and iKon cameras operating in FVB external

trigger mode.

FreelnternalMemory

unsigned int WINAPI FreelnternalMemory(void)

Description

Parameters
Return

See also

The FreelnternalMemory function will deallocate any memory used internally to store the
previously acquired data. Note that once this function has been called, data from last

acquisition cannot be retrived.

NONE

unsigned int

DRV_SUCCESS Memory freed.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.

Getlmages, PrepareAcquisition

SECTION 11
Page 84

ANDOR"

FUNCTIONS

GetAcquiredData

unsigned int WINAPI GetAcquiredData(at_32* arr, unsigned long size)

Description

This function will return the data from the last acquisition. The data are returned as long

integers (32-bit signed integers). The “array” must be large enough to hold the complete

data set.

Parameters

at_32* arr: pointer to data storage allocated by the user.

unsigned long size: total number of pixels.

Return unsigned int

DRV_SUCCESS
DRV_NOT_INITIALIZED
DRV_ACQUIRING
DRV_ERROR_ACK
DRV_P1INVALID
DRV_P2INVALID
DRV_NO_NEW_DATA

See also

Data copied.

System not initialized.

Acquisition in progress.

Unable to communicate with card.
Invalid pointer (i.e. NULL).

Array size is incorrect.

No acquisition has taken place

GetStatus, StartAcquisition, GetAcquiredData16

GetAcquiredData16

unsigned int WINAPI GetAcquiredData16(WORD* arr, unsigned long size)

Description

16-bit version of the GetAcquiredData function. The “array” must be large enough to

hold the complete data set.
WORD* arr: pointer to data storage allocated by the user.

Parameters

long size: total number of pixels.

Return unsigned int

DRV_SUCCESS
DRV_NOT _INITIALIZED
DRV_ACQUIRING
DRV_ERROR_ACK
DRV_P1INVALID
DRV_P2INVALID
DRV_NO_NEW_DATA

See also

Data copied.

System not initialized.

Acquisition in progress.

Unable to communicate with card.
Invalid pointer (i.e. NULL).

Array size isincorrect.

No acquisition has taken place

GetStatus, StartAcquisition, GetAcquiredData

SECTION 11

Page 85

ANDOR"
o ANDY FUNCTIONS

GetAcquiredFloatData

unsigned int WINAPI GetAcquiredFloatData (float* arr, unsigned long size)

Description

THIS FUNCTION IS RESERVED.

GetAcquisitionProgress

unsigned int WINAPI GetAcquisitionProgress(long* acc, long* series)

Description

Parameters

Return

See also

This function will return information on the progress of the current acquisition. It can be
called at any time but is best used in conjunction with SetDriverEvent.

The values returned show the number of completed scans in the current acquisition.
If 0 is returned for both accum and series then either:-

¢ No acquisition is currently running
e The acquisition has just completed
e The very first scan of an acquisition has just started and not yet completed

GetStatus can be used to confirm if the first scan has just started, returning
DRV_ACQUIRING, otherwise it will return DRV_IDLE.

For example, if accum=2 and series=3 then the acquisition has completed 3 in the series

and 2 accumulations in the 4 scan of the series.

long* acc: returns the number of accumulations completed in the current kinetic scan.

long* series: return the number of kinetic scans completed

unsigned int
DRV_SUCCESS Number of accumulation and series scans completed.
DRV_NOT_INITIALIZED System not initialized.

SetAcquisitionMode, SetNumberAccumulations, SetNumberKinetics, SetDriverEvent

SECTION 11
Page 86

ANDOR"
& A FUNCTIONS

GetAcquisitionTimings

unsigned int WINAPI GetAcquisitionTimings(float* exposure, float* accumulate, float* kinetic)

Description

Parameters

Return

See also

This function will return the current “valid” acquisition timing information. This function
should be used after all the acquisitions settings have been set, e.g. SetExposureTime,
SetKineticCycleTime and SetReadMode etc. The values returned are the actual times
used in subsequent acquisitions.

This function is required as it is possible to set the exposure time to 20ms, accumulate
cycle time to 30ms and then set the readout mode to full image. As it can take 250ms to

read out an image it is not possible to have a cycle time of 30ms.

float* exposure: valid exposure time in seconds
float* accumulate: valid accumulate cycle time in seconds

float* kinetic: valid kinetic cycle time in seconds

unsigned int

DRV_SUCCESS Timing information returned.
DRV_NOT_INITIALIZED System not initialized.

DRV_ACQUIRING Acquisition in progress.
DRV_INVALID_MODE Acquisition or readout mode is not available.

SetAccumulationCycleTime, SetAcquisitionMode, SetExposureTime, SetHSSpeed,

SetKineticCycleTime, SetMultiTrack, SetNumberAccumulations, SetNumberKinetics,
SetReadMode, SetSingleTrack, SetTriggerMode, SetVSSpeed

GetAdjustedRingExposureTimes

unsigned int WINAPI GetAdjustedRingExposureTimes (int inumTimes, float * fptimes)

Description

Parameters

Return

See also

This function will return the actual exposure times that the camera will use. There may be
differences between requested exposures and the actual exposures.

intinumTimes: Numbers of times requested.

float * fptimes: Pointer to an array large enough to hold _inumTimes floats.

unsigned int

DRV_SUCCESS Success.

DRV_NOT_INITIALIZED System not initialized
DRV_P1INVALID Invalid number of exposures requested

GetNumberRingExposureTimes, SetRingExposureTimes

SECTION 11
Page 87

ANDOR"

FUNCTIONS

GetAlIDMAData

unsigned int WINAPI GetAlIDMAData (at_32* arr, unsigned long size)

Description

THIS FUNCTION IS RESERVED.

GetAmpDesc

unsigned int WINAPI GetAmpDesc (int index , char* name, int len)

Description

Parameters

Return

See also

This function will return a string with an amplifier description. The amplifier is selected
using the index. The SDK has a string associated with each of its amplifiers. The
maximum number of characters needed to store the amplifier descriptions is 21. The user
has to specify the number of characters they wish to have returned to them from this

function.
Int index: The amplifier index.
char* name: A user allocated array of characters for storage of the description.

int len: The length of the user allocated character array.

unsigned int

DRV_SUCCESS Description returned.
DRV_NOT_INITIALIZED System not initialized.

DRV_P1INVALID The amplifier index is not valid.
DRV_P2INVALID The desc pointer is null.
DRV_P3INVALID The len parameter is invalid (less than 1)
GetNumberAmp

GetAmpMaxSpeed

unsigned int WINAPI GetAmpMaxSpeed (int index , float* speed)

Description

Parameters

Return

See also

This function will return the maximum available horizontal shift speed for the amplifier

selected by the index parameter.

Int index:amplifier index
float* speed:horizontal shift speed

unsigned int

DRV_SUCCESS Speed returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_P1INVALID The amplifier index is not valid
GetNumberAmp

SECTION 11
Page 88

ANDOR"
& A FUNCTIONS

GetAvailableCameras
unsigned int WINAPI GetAvailableCameras(long* totalCameras)

Description This function returns the total number of Andor cameras currently installed. It is possible

to call this function before any of the cameras are initialized.

Parameters long* totalCameras: the number of cameras currently installed

Return unsigned int
DRV_SUCCESS Number of available cameras returned.
DRV_GENERAL_ERRORS An error occurred while obtaining the number of

available cameras.

See also SetCurrentCamera, GetCurrentCamera, GetCameraHandle
GetBackground
unsigned int WINAPI GetBackground (at_32* arr, unsigned long size)
Description THIS FUNCTION IS RESERVED.
GetBitDepth
unsigned int WINAPI GetBitDepth(int channel, int* depth)
Description This function will retrieve the size in bits of the dynamic range for any available AD
channel.
Parameters int channel: the AD channel.
int* depth: dynamic range in bits
Return unsigned int
DRV_SUCCESS Depth returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_P1INVALID Invalid channel
See also GetNumberADChannels, SetADChannel
SECTION 11

Page 89

ANDOR"
o ANDY FUNCTIONS

GetCameraEventStatus

unsigned int WINAPI GetCameraEventStatus (DWORD * camStatus)

Description

Parameters

Return

See also
NOTE

This function will return if the system is exposing or not.

DWORD * camStatus: The status of the firepulse will be returned that the firepulse is low
0 Fire pulse low

1 Fire pulse high

unsigned int
DRV_SUCCESS Status returned
DRV_NOT_INITIALIZED System not initialized

SetAcqgStatusEvent, SetPCIMode
This is only supported by the CCI23 card.

GetCameraHandle

unsigned int WINAPI GetCameraHandle(long cameralndex, long* cameraHandle)

Description

Parameters

Return

See also

This function returns the handle for the camera specified by cameralndex. When multiple
Andor cameras are installed the handle of each camera must be retrieved in order to

select a camera using the SetCurrentCamera function.

The number of cameras can be obtained using the GetAvailableCameras function.

long cameralndex: index of any of the installed cameras.
Valid values 0 to NumberCameras-1 where NumberCameras is the value

returned by the GetAvailableCameras function.

long* cameraHandle: handle of the camera.

unsigned int
DRV_SUCCESS Camera handle returned.

DRV_P1INVALID Invalid camera index.

SetCurrentCamera, GetAvailableCameras, GetCurrentCamera

SECTION 11
Page 90

ANDOR"

FUNCTIONS

GetCameralnformation

unsigned int WINAPI GetCameralnformation (int index, long * information)

Description
Parameters

Return

See also

NOTE

This function will return information on a particular camera denoted by the index.
Int index: (reserved)

Long* information: current state of camera
Bit:1 1 - USB camera present
Bit:2 1 - All dlls loaded properly

Bit:3 1 - Camera Initialized correctly

unsigned int

DRV_SUCCESS Driver status return
DRV_VXDNOTINSTALLED Driver not installed
DRV_USBERROR USB device error

GetCameraHandle, GetHeadModel, GetCameraSerialNumber, GetCapabilities

Only available in iDus. The index parameter is not used at present so should be
set to 0. For any camera except the iDus The value of information following a call
to this function will be zero.

GetCameraSerialNumber

unsigned int WINAPI GetCameraSerialNumber (int* number)

Description

Parameters
Return

See also

This function will retrieve camera’s serial number.

int *number: Serial Number.

unsigned int
DRV_SUCCESS Serial Number returned.
DRV_NOT_INITIALIZED System not initialized.

GetCameraHandle, GetHeadModel, GetCameralnformation, GetCapabilities

SECTION 11
Page 91

ANDOR"
& A FUNCTIONS

GetCapabilities

unsigned int WINAPI GetCapabilities(AndorCapabilities* caps)

Description

Parameters

Return

See also

This function will fill in an AndorCapabilities structure with the capabilities associated with
the connected camera. Before passing the address of an AndorCapabilites structure to the
function the ulSize member of the structure should be set to the size of the structure. In
C++ this can be done with the line:

caps->ulSize = sizeof(AndorCapabilities);

Individual capabilities are determined by examining certain bits and combinations of bits in
the member variables of the AndorCapabilites structure. The next few pages contain a

summary of the capabilities currently returned.

Andor capabilities* caps: the

capabilities structure to be filled in.

unsigned int

DRV_NOT_INITIALIZED System not initialized
DRV_SUCCESS Capabilities returned.
DRV_P1INVALID Invalid caps parameter (i.e. NULL).

GetCameraHandle, GetCameraSerialNumber, GetHeadModel, GetCameralnformation

SECTION 11
Page 92

ANDOR"
o ANDY FUNCTIONS

GetCapabilities (Acquisition Modes)

Acquisition Modes - AndorCapabilities Member: ulAcgModes

Capability: AC_ACQMODE_SINGLE

Description: Single Scan Acquisition Mode available using SetAcquisitionMode.
Bit: 0

State: 1

Capability: AC_ACQMODE_VIDEO

Description: Video (Run Till Abort) Acquisition Mode available using SetAcquisitionMode.
Bit: 1

State: 1

Capability: AC_ACQMODE_ACCUMULATE

Description: Accumulation Acquisition Mode available using SetAcquisitionMode.
Bit: 2

State: 1

Capability: AC_ACQMODE_KINETIC

Description: Kinetic Series Acquisition Mode available using SetAcquisitionMode.
Bit: 3

State: 1

Capability: AC_ACQMODE_FRAMETRANSFER

Description: Frame Transfer Acquisition Mode available using SetAcquisitionMode.
Bit: 4

State: 1

Capability: AC_ACQMODE_FASTKINETICS

Description: Fast Kinetics Acquisition Mode available using SetAcquisitionMode.
Bit: 5

State: 1

Capability: AC_ACQMODE_OVERLAP

Description: Overlap Acquisition Mode available using SetAcquisitionMode.
Bit: 6

State: 1

SECTION 11
Page 93

ANDOR"

FUNCTIONS

Read Modes - AndorCapabilities Member: ulReadModes

Capability: AC_READMODE_FULLIMAGE

Description: Full Image Read Mode available using SetReadMode.
Bit: 0

State: 1

Capability: AC_READMODE_SUBIMAGE

Description: Sub Image Read Mode available using SetReadMode.
Bit: 1

State: 1

Capability: AC_READMODE_SINGLETRACK

Description: Single track Read Mode available using SetReadMode.
Bit: 2

State: 1

Capability: AC_READMODE_FVB

Description: Full Vertical Binning Read Mode available using SetReadMode.

Bit: 3
State: 1

Capability: AC_READMODE_MULTITRACK

Description: Multi Track Read Mode available using SetReadMode.
Bit: 4

State: 1

Capability: AC_READMODE_RANDOMTRACK

Description: Random-Track Read Mode available using SetReadMode.
Bit: 5

State: 1

Page 94

GetCapabilities (Read Modes)

SECTION 11

ANDOR"
& A FUNCTIONS

GetCapabilities (Read Modes compatible with Frame Transfer mode)

Read Modes - AndorCapabilities Member: ulFTReadModes

Capability: AC_READMODE_FULLIMAGE

Description: Full Image Read Mode available using SetReadMode.
Bit: 0

State: 1

Capability: AC_READMODE_SUBIMAGE

Description: Sub Image Read Mode available using SetReadMode.
Bit: 1

State: 1

Capability: AC_READMODE_SINGLETRACK

Description: Single track Read Mode available using SetReadMode.
Bit: 2

State: 1

Capability: AC_READMODE_FVB

Description: Full Vertical Binning Read Mode available using SetReadMode.
Bit: 3

State: 1

Capability: AC_READMODE_MULTITRACK

Description: Multi Track Read Mode available using SetReadMode.
Bit: 4

State: 1

Capability: AC_READMODE_RANDOMTRACK

Description: Random-Track Read Mode available using SetReadMode.
Bit: 5

State: 1

SECTION 11
Page 95

ANDOR"
& A FUNCTIONS

GetCapabilities (Trigger Modes)

Trigger Modes - AndorCapabilities Member: ulTriggerModes

Capability: AC_TRIGGERMODE_INTERNAL

Description: Internal Trigger Mode available using SetTriggerMode.
Bit: 0

State: 1

Capability: AC_TRIGGERMODE_EXTERNAL

Description: External Trigger Mode available using SetTriggerMode.
Bit: 1

State: 1

Capability: AC_TRIGGERMODE_EXTERNAL_FVB_EM

Description: External FVB EM Trigger Mode available using SetTriggerMode.
Bit: 2

State: 1

Capability: AC_TRIGGERMODE_CONTINUOUS

Description: Continuous Trigger Mode available using SetTriggerMode.
Bit: 3

State: 1

Capability: AC_TRIGGERMODE_EXTERNALSTART

Description: External Start Trigger Mode available using SetTriggerMode.
Bit: 4

State: 1

Capability: AC_TRIGGERMODE_BULB

Description: Bulb Trigger Mode available using SetTriggerMode.

Bit: 5

State: 1

Note: This capability is deprecated by AC_TRIGGERMODE_EXTERNALEXPOSURE.

Capability: AC_TRIGGERMODE_EXTERNALEXPOSURE

Description: External Exposure Trigger Mode available using SetTriggerMode.
Bit: 5

State: 1

Capability: AC_TRIGGERMODE_INVERTED

Description: Inverted Trigger Mode available using SetTriggerinvert.
Bit: 6

State: 1

SECTION 11
Page 96

ANDOR"

FUNCTIONS

Camera Type - AndorCapabilities Member: ulCameraType

Capability: AC_CAMERATYPE_PDA
Description: Camera is an Andor PDA.
Bits: 0-31

Value: 0

Capability: AC_CAMERATYPE_IXON
Description: Camera is an Andor iXon.
Bits: 0-31

Value: 1

Capability: AC_CAMERATYPE_ICCD
Description: Camera is an Andor ICCD.
Bits: 0-31

Value: 2

Capability: AC_CAMERATYPE_EMCCD
Description: Camera is an Andor EMCCD.
Bits: 0-31

Value: 3

Capability: AC_CAMERATYPE_CCD
Description: Camera is an Andor CCD.
Bits: 0-31

Value: 4

Capability: AC_CAMERATYPE_ISTAR
Description: Camera is an Andor iStar.
Bits: 0-31

Value: 5

Capability: AC_CAMERATYPE_VIDEO
Description: Camera is a third party camera.
Bits: 0-31

Value: 6

Page 97

GetCapabilities (Camera Type)

SECTION 11

ANDOR"

FUNCTIONS

Capability: AC_CAMERATYPE_IDUS
Description: Camera is an Andor iDus.
Bits: 0-31

Value: 7

Capability: AC_CAMERATYPE_NEWTON
Description: Camera is an Andor Newton.
Bits: 0-31

Value: 8

Capability: AC_CAMERATYPE_SURCAM
Description: Camera is an Andor Surcam.
Bits: 0-31

Value: 9

Capability: AC_CAMERATYPE_USBISTAR
Description: Camera is an Andor USBiStar.
Bits: 0-31

Value: 10

Capability: AC_CAMERATYPE_LUCA
Description: Camera is an Andor Luca.
Bits: 0-31
Value: 11

Capability: AC_CAMERATYPE_RESERVED
Description: Reserved.

Bits: 0-31

Value: 12

Capability: AC_CAMERATYPE_IKON
Description: Camera is an Andor iKon.
Bits: 0-31
Value: 13

Capability: AC_CAMERATYPE_INGAAS
Description: Camera is an Andor InGaAs.
Bits: 0-31
Value: 14

Capability: AC_CAMERATYPE_IVAC

Description: Camera is an Andor iVac.
Bits: 0-31

Page 98

GetCapabilities (Camera Type) - continued

SECTION 11

ANDOR"

FUNCTIONS

Value: 15

Capability: AC_CAMERATYPE_CLARA
Description: Camera is an Andor Clara.
Bits: 0-31
Value: 17

All other values reserved.

Page 99

SECTION 11

ANDOR"

FUNCTIONS

Pixel Mode - AndorCapabilities Member: ulPixelModes

Capability: AC_PIXELMODE_8BIT
Description: Camera can acquire in 8-bit mode.
Bit: 0

State: 1

Capability: AC_PIXELMODE_14BIT
Description: Camera can acquire in 14-bit mode.
Bit: 1

State: 1

Capability: AC_PIXELMODE_16BIT
Description: Camera can acquire in 16-bit mode.
Bit: 2

State: 1

Capability: AC_PIXELMODE_32BIT
Description: Camera can acquire in 32-bit mode.
Bit: 3

State: 1

Capability: AC_PIXELMODE_MONO
Description: Camera acquires data in grey scale.
Bits: 16-31

Value: 0

Capability: AC_PIXELMODE_RGB

Description: Camera acquires data in RGB mode.
Bits: 16-31

Value: 1

Capability: AC_PIXELMODE_CMY

Description: Camera acquires data in CMY mode.
Bits: 16-31

Value: 2

Page 100

GetCapabilities (Pixel Mode)

SECTION 11

ANDOR"
& A FUNCTIONS

GetCapabilities (Available Set Functions)

Available Set Functions - AndorCapabilities Member: ulSetFunctions

Capability: AC_SETFUNCTION_VREADOUT

Description: The vertical readout speed can be set with the SetVSSpeed function.
Bit: 0

State: 1

Capability: AC_SETFUNCTION_HREADOUT

Description: The horizontal readout speed can be set with the SetHSSpeed function.
Bit: 1

State: 1

Capability: AC_SETFUNCTION_TEMPERATURE

Description: The target temperature can be set using the SetTemperature function.
Bit: 2

State: 1

Capability: AC_SETFUNCTION_MCPGAIN (AC_SETFUNCTION_GAIN Deprecated)
Description: Gain through the SetMCPGain function is available.

Bit: 3

State: 1

Capability: AC_SETFUNCTION_EMCCDGAIN

Description: Gain through the SetEMCCDGain function is available.
Bit: 4

State: 1

Capability: AC_SETFUNCTION_BASELINECLAMP

Description: Baseline clamp can be turned on or off with the SetBaselineClamp function.
Bit: 5

State: 1

Capability: AC_SETFUNCTION_VSAMPLITUDE

Description: The vertical clock voltage can be set with the SetVSAmplitude function.
Bit: 6

State: 1

Capability: AC_SETFUNCTION_HIGHCAPACITY

Description: High capacity mode can be turned on or off with the SetHighCapacity function.
Bit: 7

State: 1

SECTION 11
Page 101

ANDOR"
o ANDY FUNCTIONS

GetCapabilities (Available Set Functions) - Continued

Capability: AC_SETFUNCTION_BASELINEOFFSET

Description: The baseline offset can be set with the SetBaselineOffset function.
Bit: 8

State: 1

Capability: AC_SETFUNCTION_PREAMPGAIN

Description: The pre amp gain can be set with the SetPreAmpGain function.
Bit: 9

State: 1

Capability: AC_SETFUNCTION_CROPMODE

Description: Crop mode can be selected using the SetCropMode or SetlsolatedCropMode functions.
Bit: 10

State: 1

Capability: AC_SETFUNCTION_DMAPARAMETERS

Description: The DMA parameters can be set with the SetDMAParameters function.
Bit: 11

State: 1

Capability: AC_SETFUNCTION_HORIZONTALBIN

Description: The horizontal binning can be set for the relative read mode.
Bit: 12

State: 1 See Note.

Capability: AC_SETFUNCTION_MULTITRACKHRANGE

Description: The multitrack horizontal range can be set using the SetMultiTrackHRange function.
Bit: 13

State: 1

Capability: AC_SETFUNCTION_RANDOMTRACKNOGAPS

Description: Random tracks can be set with no gaps inbetween with the SetRandomTracks or
SetComplexlmage functions.

Bit: 14
State: 1
NOTE: For iDus, the horizontalbin capability will be 0, as it is not recommended, but it is possible.

SECTION 11
Page 102

ANDOR"
& A FUNCTIONS

GetCapabilities (Available Get Functions)

Available Get Functions - AndorCapabilities Member: ulGetFunctions

Capability: AC_GETFUNCTION_TEMPERATURE

Description: The current temperature can be determined using the GetTemperature function.
Bit: 0

State: 1

Capability: AC_GETFUNCTION_TEMPERATURERANGE
Description: The range of possible temperatures can be determined using the GetTemperatureRange

function.

Bit: 2
State: 1

Capability: AC_GETFUNCTION_DETECTORSIZE

Description: The dimensions of the detector can be determined using the GetDetector function.
Bit: 3

State: 1

Capability: AC_GETFUNCTION_MCPGAIN (AC_GETFUNCTION_GAIN deprecated)
Description: Reserved capability.

Bit: 4

State: 1

Capability: AC_GETFUNCTION_EMCCDGAIN

Description: The gain can be determined using the GetEMCCDGain function.
Bit: 5

State: 1

SECTION 11
Page 103

ANDOR"
& A FUNCTIONS

GetCapabilities (SDK Features Available)

SDK Features Available - AndorCapabilities Member: ulFeatures

Capability: AC_FEATURES_POLLING

Description: The status of the current acquisition can be determined through the GetStatus function call.
Bit: 0

State: 1

Capability: AC_FEATURES_EVENTS
Description: A Windows Event can be passed to the SDK to alert the user at certain stages of the

Acquisition. See SetDriverEvent
Bit: 1
State: 1

Capability: AC_FEATURES_SPOOLING

Description: Acquisition Data can be made to spool to disk using the SetSpool function.
Bit: 2

State: 1

Capability: AC_FEATURES_SHUTTER

Description: Shutter settings can be adjusted through the SetShutter function.
Bit: 3

State: 1

Capability: AC_FEATURES_SHUTTEREX

Description: Shutter settings can be adjusted through the SetShutterEx function.
Bit: 4

State: 1

Capability: AC_FEATURES_EXTERNAL_I12C

Description: The camera has its own dedicated external I12C bus.
Bit: 5

State: 1

Capability: AC_FEATURES_SATURATIONEVENT

Description: Sensor saturation can be determined through the SetSaturationEvent function.
Bit: 6

State: 1

SECTION 11
Page 104

ANDOR"
& A FUNCTIONS

GetCapabilities (SDK Features Available) - Continued

Capability: AC_FEATURES_FANCONTROL

Description: Fan settings can be adjusted through the SetFanMode function.
Bit: 7

State: 1

Capability: AC_FEATURES_MIDFANCONTROL

Description: It is possible to select a low fan setting through the SetFanMode function.
Bit: 8

State: 1

Capability: AC_FEATURES_TEMPERATUREDURINGACQUISITION
Description: It is possible to read the camera temperature during an acquisition with the GetTemperature

function.

Bit: 9
State: 1

Capability: AC_FEATURES_KEEPCLEANCONTROL
Description: It is possible to turn off keep cleans between scans.

Bit: 10
State: 1

Capability: AC_FEATURES_DDGLITE
Description: Reserved for internal use.

Bit: 11
State: 1

Capability: AC_FEATURES_FTEXTERNALEXPOSURE
Description: The combination of Frame Transfer and External Exposure modes is available.

Bit: 12
State: 1

Capability: AC_FEATURES_KINETICEXTERNALEXPOSURE
Description: External Exposure trigger mode is available in Kinetic acquisition mode.

Bit: 13
State: 1

Capability: AC_FEATURES_DACCONTROL
Description: Reserved for internal use.

Bit: 14
State: 1

SECTION 11
Page 105

ANDOR"

FUNCTIONS
Capability: AC_FEATURES_METADATA
Description: Reserved for internal use.
Bit: 15
State: 1
Capability: AC_FEATURES_TTLIOCONTROL
Description: Configurable TTL IO’s available. See SetTTLIOLevel.
Bit: 16
State: 1
Capability: AC_FEATURES_DUALMODE
Description: Dual exposure mode. See SetDualExposureMode.
Bit: 19
State: 1

SECTION 11

Page 106

ANDOR"
*AT0Y FUNCTIONS

GetCapabilities (PCI Card Capabilities)

PCI Card Capabilities - AndorCapabilities Member: ulPCiCard
Description: Maximum speed in Hz PCI controller card is capable of.

GetCapabilities (Gain Features Available)

Gain Features Available - AndorCapabilities Member: ulEMGainCapability

Capability: AC_EMGAIN_8BIT
Description:.8-bit DAC settable.
Bit: 0

State: 1

Capability: AC_EMGAIN_12BIT
Description:.12-bit DAC settable
Bit: 1

State: 1

Capability: AC_EMGAIN_LINEAR12

Description:.Gain setting represent a linear gain scale. 12-bit DAC used internally.
Bit: 2

State: 1

Capability: AC_EMGAIN_REAL12

Description:.Gain setting represents the real EM Gain value. 12-bit DAC used internally.
Bit: 3

State: 1

SECTION 11
Page 107

ANDOR"
& A FUNCTIONS

GetControllerCardModel
unsigned int WINAPI GetControllerCardModel (char* controllerCardModel)

Description This function will retrieve the type of PCI controller card included in your system. This
function is not applicable for USB systems. The maximum number of characters that can be
returned from this function is 10.

Parameters char* controllerCardModel: A user allocated array of characters for storage of the controller
card model.
Return unsigned int
DRV_SUCCESS Name returned.
DRV_NOT_INITIALIZED System not initialized
See also GetHeadModel, GetCameraSerialNumber, GetCameralnformation, GetCapabilities
GetCurrentCamera

unsigned int WINAPI GetCurrentCamera(long* cameraHandle)

Description When multiple Andor cameras are installed this function returns the handle of the

currently selected one.

Parameters long* cameraHandle: handle of the currently selected camera
Return unsigned int

DRV_SUCCESS Camera handle returned.
See also SetCurrentCamera, GetAvailableCameras, GetCameraHandle

SECTION 11
Page 108

ANDOR"
& A FUNCTIONS

GetDDGPulse
unsigned int WINAPI GetDDGPulse(double width, double resolution, double* Delay, double* Width)

Description This function attempts to find a laser pulse in a user-defined region with a given resolution.

The values returned will provide an estimation of the location of the pulse.

Parameters double width: the time in picoseconds of the region to be searched.
double resolution: the minimum gate pulse used to locate the laser.
double* Delay: the approximate start of the laser pulse.

double* Width: the pulse width, which encapsulated the laser pulse.

Return unsigned int
DRV_SUCCESS Location returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.

NOTE: Available in iStar.

SECTION 11
Page 109

ANDOR"
o ANDY FUNCTIONS

GetDDGIOCFrequency
unsigned int WINAPI GetDDGIOCFrequency(double*frequency)

Description This function can be used to return the actual I0C frequency that will be triggered. It should

only be called once all the conditions of the experiment have been defined.

Parameters double*frequency: the number of integrate on chip pulses triggered within the fire pulse.
Return unsigned int
DRV_SUCCESS Number returned
DRV_NOT_INITIALIZED System not initialized
DRV_ERROR_ACK Unable to communicate with card
See also SetDDGIOCFrequency SetDDGIOCNumber GetDDGIOCNumber GetDDGIOCPulses
SetDDGIOC

NOTE: Available in iStar.

GetDDGIOCNumber
unsigned int WINAPI GetDDGIOCNumber(unsigned long* numberPulses)

Description This function can be used to return the actual number of pulses that will be triggered. It

should only be called once all the conditions of the experiment have been defined.

Parameters unsigned long* numberPulses: the number of integrate on chip pulses triggered within

the fire pulse.

Return unsigned int
DRV_SUCCESS Number returned
DRV_NOT_INITIALIZED System not initialized
DRV_ERROR_ACK Unable to communicate with card
See also SetDDGIOCFrequency GetDDGIOCFrequency SetDDGIOCNumber GetDDGIOCPulses
SetDDGIOC

NOTE: Available in iStar.

SECTION 11
Page 110

ANDOR"
& A FUNCTIONS

GetDDGIOCPulses
unsigned int WINAPI GetDDGIOCPulses(int* pulses)

Description This function can be used to calculate the number of pulses that will be triggered with the
given exposure time, readout mode, acquisition mode and integrate on chip frequency. It

should only be called once all the conditions of the experiment have been defined.

Parameters int* pulses: the number of integrate on chip pulses triggered within the fire pulse.
Return unsigned int

DRV_SUCCESS Number returned.

DRV_NOT_INITIALIZED System not initialized.

DRV_ACQUIRING Acquisition in progress.

DRV_ERROR_ACK Unable to communicate with card.
See also SetDDGIOCFrequency GetDDGIOCFrequency SetDDGIOCNumber

GetDDGIOCNumber SetDDGIOC
NOTE: Available in iStar.

SECTION 11
Page 111

ANDOR"

FUNCTIONS

GetDetector

unsigned int WINAPI GetDetector(int* xpixels, int* ypixels)

Description

Parameters

Return

This function returns the size of the detector in pixels. The horizontal axis is taken to be
the axis parallel to the readout register.

int* xpixels: number of horizontal pixels.

int* ypixels: number of vertical pixels.

unsigned int
DRV_SUCCESS Detector size returned.
DRV_NOT_INITIALIZED System not initialized.

GetDICameralnfo

unsigned int WINAPI GetDICameralnfo (void *info)

Description

THIS FUNCTION IS RESERVED.

GetDualExposureTimes

unsigned int WINAPI GetDualExposureTimes(float* exposure1, float* exposure2)

Description

Parameters

Return

See also

This function will return the current “valid” acquisition timing information for dual exposure
mode. This mode is only available for certain sensors in run till abort mode, external

trigger, full image.

float* exposure1: valid exposure time in seconds for each odd numbered frame.
float* exposure2: valid exposure time in seconds for each even numbered frame.

unsigned int

DRV_SUCCESS Parameters set.

DRV_NOT_INITIALIZED System not initialized. .

DRV_NOT_SUPPORTED Dual exposure mode not supported on this camera.
DRV_NOT_AVAILABLE Dual exposure mode not configured correctly.
DRV_ACQUIRING Acquisition in progress.

DRV_P1INVALID exposurel1 has invalid memory address.
DRV_P2INVALID exposure2 has invalid memory address.

GetCapabilities, SetDualExposureMode, SetDualExposureTimes

SECTION 11
Page 112

ANDOR"
& A FUNCTIONS

GetEMCCDGain
unsigned int WINAPI GetEMCCDGain(int* gain)

Description Returns the current gain setting. The meaning of the value returned depends on the EM
Gain mode.
Parameters Int*gain: current EM gain setting
Return
DRV_SUCCESS Gain returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.

GetEMGainRange
unsigned int WINAPI GetEMGainRange(int* low, int* high)

Description Returns the minimum and maximum values of the current selected EM Gain mode and

temperature of the sensor.
Parameters int* low: lowest gain setting
int* high: highest gain setting

Return
DRV_SUCCESS Gain range returned.

DRV_NOT_INITIALIZED System not initialized.

SECTION 11
Page 113

ANDOR"
& A FUNCTIONS

GetFastestRecommendedVSSpeed
unsigned int WINAPI GetFastestRecommendedVSSpeed (int* index, float* speed)

Description As your Andor SDK system may be capable of operating at more than one vertical shift
speed this function will return the fastest recommended speed available. The very high

readout speeds, may require an increase in the amplitude of the Vertical Clock Voltage

using SetVSAmplitude. This function returns the fastest speed which does not require the
Vertical Clock Voltage to be adjusted. The values returned are the vertical shift speed

index and the actual speed in microseconds per pixel shift.

Parameters Int* index: index of the fastest recommended vertical shift speed

float* speed: speed in microseconds per pixel shift.

Return unsigned int
DRV_SUCCESS Speed returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
See also GetVSSpeed, GetNumberVSSpeeds, SetVSSpeed

GetFIFOUsage
unsigned int WINAPI GetFIFOUsage (int* FIFOusage)

Description THIS FUNCTION IS RESERVED.

GetFilterMode
unsigned int WINAPI GetFilterMode(int* mode)

Description This function returns the current state of the cosmic ray filtering mode.
Parameters int* mode: current state of filter

0 OFF
2 ON

Return unsigned int
DRV_SUCCESS Filter mode returned.

DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.

See also SetFilterMode

SECTION 11
Page 114

ANDOR"
o ANDY FUNCTIONS

GetFKExposureTime

unsigned int WINAPI GetFKExposureTime(float* time)

Description

Parameters
Return

See also

This function will return the current “valid” exposure time for a fast kinetics acquisition. This
function should be used after all the acquisitions settings have been set, i.e.
SetFastKinetics and SetFKVShiftSpeed. The value returned is the actual time used in

subsequent acquisitions.

float* time: valid exposure time in seconds

unsigned int

DRV_SUCCESS Timing information returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_INVALID_MODE Fast kinetics is not available.

SetFastKinetics, SetFKVShiftSpeed

GetFKVShiftSpeed

unsigned int WINAPI GetFKVShiftSpeed(int index, int* speed)

Description

Parameters

Return

See also

Deprecated see Note:

As your Andor SDK system is capable of operating at more than one fast kinetics vertical
shift speed this function will return the actual speeds available. The value returned is in
microseconds per pixel shift.

int index: speed required
Valid values 0 to GetNumberFKVShiftSpeeds()-1

int* speed: speed in micro-seconds per pixel shift

unsigned int

DRV_SUCCESS Speed returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid index.

GetNumberFKVShiftSpeeds, SetFKVShiftSpeed

NOTE: Deprecated by GetFKVShiftSpeedF

SECTION 11
Page 115

ANDOR"
& A FUNCTIONS

GetFKVShiftSpeedF
unsigned int WINAPI GetFKVShiftSpeedF(int index, float* speed)

Description As your Andor system is capable of operating at more than one fast kinetics vertical shift
speed this function will return the actual speeds available. The value returned is in
microseconds per pixel shift.

Parameters int index: speed required
Valid values: 0 to GetNumberFKVShiftSpeeds()-1
float* speed: speed in micro-seconds per pixel shift

Return unsigned int
DRV_SUCCESS Speed returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid index.

See also GetNumberFKVShiftSpeeds, SetFKVShiftSpeed

NOTE: Only available if camera is Classic or iStar.

SECTION 11
Page 116

ANDOR"
*AT0Y FUNCTIONS

GetHardwareVersion
unsigned int WINAPI GetHardwareVersion(unsigned int* PCB, unsigned int* Decode, unsigned int*
dummy1, unsigned int* dummy2, unsigned int* CameraFirmwareVersion, unsigned int*

CameraFirmwareBuild)

Description This function returns the Hardware version information.
Parameters Unsigned int* PCB: Plug-in card version

unsigned int* Decode: Flex 10K file version

unsigned int* dummy1

unsigned int* dummy?2

unsigned int* CameraFirmwareVersion: Version number of camera firmware

unsigned int* CameraFirmwareBuild: Build number of camera firmware

Return unsigned int
DRV_SUCCESS Version information returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
GetHeadModel
unsigned int WINAPI GetHeadModel(char* name)
Description This function will retrieve the type of CCD attached to your system.
Parameters char* name: A user allocated array of characters for storage of the Head Model. This
should be declared as size MAX_PATH.
Return unsigned int
DRV_SUCCESS Name returned.
DRV_NOT_INITIALIZED System not initialized.
SECTION 11

Page 117

ANDOR"
o ANDY FUNCTIONS

GetHorizontalSpeed
unsigned int WINAPI GetHorizontalSpeed(int index, int* speed)

Description Deprecated see Note:

As your Andor system is capable of operating at more than one horizontal shift speed this
function will return the actual speeds available. The value returned is in microseconds per

pixel shift.

Parameters int index: speed required
Valid values: 0 to NumberSpeeds-1, where NumberSpeeds is the parameter

returned by GetNumberHorizontalSpeeds.

int* speed: speed in micro-seconds per pixel shift

Return unsigned int
DRV_SUCCESS Speed returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid index.

See also GetNumberHorizontalSpeeds, SetHorizontalSpeed

NOTE: Deprecated by GetHSSpeed

SECTION 11
Page 118

ANDOR"

FUNCTIONS

GetHSSpeed

unsigned int WINAPI GetHSSpeed(int channel, int typ, int index, float* speed)

Description

Parameters

Return

See also

As your Andor system is capable of operating at more than one horizontal shift speed this

function will return the actual speeds available. The value returned is in MHz.

int channel: the AD channel.
int typ: output amplification.
Valid values: 0 electron multiplication.
1 conventional.
int index: speed required
Valid values 0 to NumberSpeeds-1 where NumberSpeeds is value returned in first

parameter after a call to GetNumberHSSpeeds().

float* speed: speed in in MHz.

unsigned int

DRV_SUCCESS Speed returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_P1INVALID Invalid channel.
DRV_P2INVALID Invalid horizontal read mode
DRV_P3INVALID Invalid index

GetNumberHSSpeeds, SetHSSpeed

NOTE: The speed is returned in microseconds per pixel shift for iStar and Classic systems.

GetHVflag

unsigned int WINAPI GetHVflag (int* bFlag)

Description

Parameters

Return

NOTE

This function will retrieve the High Voltage flag from your USB iStar intensifier. A 0 value

indicates that the high voltage is abnormal.

int* bFlag: pointer to High Voltage flag.

unsigned int

DRV_SUCCESS HV flag returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_NOT_AVAILABLE Not a USB iStar.

Available only on USB iStar.

SECTION 11
Page 119

ANDOR"
-

TECHNOLOGY FUNCTIONS
GetID
unsigned int WINAPI GetID (int devNum, int* id)
Description THIS FUNCTION IS RESERVED.
GetlmageFlip
unsigned int WINAPI GetlmageFlip(int iHFlip, int iVFlip)
Description This function will obtain whether the acquired data output is flipped in either the horizontal
or vertical direction.
Parameters int* iHFlip: Gets horizontal flipping.
int* iVFlip: Gets vertical flipping.
1 — Flipping Enabled
0 — Flipping Disabled
Return unsigned int
DRV_SUCCESS All parameters accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_P1INVALID HFlip parameter invalid.
DRV_P2INVALID VFlip parameter invalid
See also SetlmageRotate SetimageFlip
GetlmageRotate
unsigned int WINAPI GetimageRotate(int* iRotate)
Description This function will obtain whether the acquired data output is rotated in any direction.
Parameters int* iRotate: Rotation setting
0 - No rotation
1 - Rotate 90 degrees clockwise
2 - Rotate 90 degrees anti-clockwise
Return unsigned int
DRV_SUCCESS All parameters accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_P1INVALID Rotate parameter invalid.
See also SetlmageFlip SetimageRotate

SECTION 11
Page 120

ANDOR"
o ANDY FUNCTIONS

Getlmages
unsigned int WINAPI Getlmages(long first, long last, at_32* arr, unsigned long size, long* validfirst,

long* validlast)

Description This function will update the data array with the specified series of images from the
circular buffer. If the specified series is out of range (i.e. the images have been

overwritten or have not yet been acquired then an error will be returned.

Parameters long first: index of first image in buffer to retrieve.
long last: index of last image in buffer to retrieve.
at_32* arr: pointer to data storage allocated by the user.
unsigned long size: total number of pixels.
long* validfirst: index of the first valid image.

long* validlast: index of the last valid image.

Return unsigned int
DRV_SUCCESS Images have been copied into array.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_GENERAL_ERRORS The series is out of range.
DRV_P3INVALID Invalid pointer (i.e. NULL).
DRV_P4INVALID Array size is incorrect.
DRV_NO_NEW_DATA There is no new data yet.

See also Getlmages16, GetNumberNewlmages

SECTION 11
Page 121

ANDOR"
o ANDY FUNCTIONS

Getlmages16
unsigned int WINAPI Getimages16(long first, long last, WORD* arr, unsigned long size, long*
validfirst, long* validlast)

Description 16-bit version of the Getimages function.
Parameters long first: index of first image in buffer to retrieve.

long last: index of last image in buffer to retrieve.
WORD* arr: pointer to data storage allocated by the user.
unsigned long size: total number of pixels.

long* validfirst: index of the first valid image.

long* validlast: index of the last valid image.

Return unsigned int
DRV_SUCCESS Images have been copied into array.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_GENERAL_ERRORS The series is out of range.
DRV_P3INVALID Invalid pointer (i.e. NULL).
DRV_P4INVALID Array size is incorrect.
DRV_NO_NEW_DATA There is no new data yet.

See also Getlmages, GetNumberNewlmages

GetlmagesPerDMA
unsigned int WINAPI GetimagesPerDMA (unsigned long* images)

Description This function will return the maximum number of images that can be transferred during a
single DMA transaction.
Parameters unsigned long* images:

Return unsigned int
DRV_SUCCESS

GetIRQ
unsigned int WINAPI GetIRQ (int* IRQ)

Description THIS FUNCTION IS RESERVED.

SECTION 11
Page 122

ANDOR"

FUNCTIONS

GetKeepCleanTime

unsigned int WINAPI GetKeepCleanTime(float* KeepCleanTime)

Description

Parameters

Return

See also

NOTES

This function will return the time to perform a keep clean cycle. This function should be
used after all the acquisitions settings have been set, e.g. SetExposureTime,
SetKineticCycleTime and SetReadMode etc. The value returned is the actual times used

in subsequent acquisitions.

float* KeepCleanTime: valid readout time in seconds

unsigned int

DRV_SUCCESS Timing information returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_CODES Error communicating with camera.

GetAcquisitionTimings GetReadOutTime

NOTE: Available on iDus, iXon, Luca & Newton.

GetMaximumBinning

unsigned int WINAPI GetMaximumBinning (int ReadMode, int HorzVert, int* MaxBinning)

Description

Parameters

Return

See also

This function will return the maximum binning allowable in either the vertical or horizontal

dimension for a particular readout mode.

int ReadMode: The readout mode for which to retrieve the maximum binning (see
SetReadMode for possible values).

int HorzVert: O to retrieve horizontal binning limit, 1 to retreive limit in the vertical.
int* MaxBinning: Will contain the Maximum binning value on return.

unsigned int

DRV_SUCCESS Maximum Binning returned
DRV_NOT_INITIALIZED System not initialized
DRV_P1INVALID Invalid Readmode

DRV_P2INVALID HorzVert not equal to 0 or 1
DRV_P3INVALID Invalid MaxBinning address (i.e. NULL)

GetMinimumImagelLength, SetReadMode

SECTION 11
Page 123

ANDOR"
o ANDY FUNCTIONS

GetMaximumExposure

unsigned int WINAPI GetMaximumExposure (float* MaxExp)
Description This function will return the maximum Exposure Time in seconds that is settable by the

SetExposureTime function.

Parameters Float int* MaxExp: Will contain the Maximum exposure value on return.
Return unsigned int
DRV_SUCCESS Maximum Exposure returned.
DRV_P1INVALID Invalid MaxExp value (i.e. NULL)
See also SetExposureTime

GetMCPGain
unsigned int WINAPI GetMCPGain (int* pi_gain)
Description This function will retrieve the set value for the MCP Gain.
Parameters int* pi_gain: Returned gain value.
Return unsigned int
DRV_SUCCESS Table returned
DRV_NOT_INITIALIZED System not initialized
DRV_ACQUIRING Acquisition in progress
DRV_P1INVALID Invalid pointer (i.e. NULL)
DRV_NOT_AVAILABLE Not a USB iStar
See also SetMCPGain
NOTE Available only on USB iStar.

This function previously returned a table of MCP gain values against
photoelectrons per count. This is now retrieved using GetMCPGainTable.

GetMCPGainRange
unsigned int WINAPI GetMCPGainRange(int* iLow, int* iHigh)

Description Returns the minimum and maximum values of the SetMCPGain function.

Parameters int* iLow: lowest gain setting

int* iHigh: highest gain setting

Return
DRV_SUCCESS Gain range returned.
DRV_NOT_INITIALIZED System not initialized.
See also SetMCPGain
NOTE Available only iStar.

SECTION 11
Page 124

ANDOR"

FUNCTIONS
GetMCPVoltage
unsigned int WINAPI GetMCPVoltage (int* iVoltage)
Description This function will retrieve the current Micro Channel Plate voltage.
Parameters int* iVoltage: Will contain voltage on return. The unit is in Volts and should be between

the range 600 — 1100 Volts.

Return unsigned int
DRV_SUCCESS Voltage returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_NOT_AVAILABLE Not a USB iStar.
DRV_GENERAL_ERRORS EEPROM not valid

See also GetMCPGain

NOTE Available only on USB iStar.

GetMetaDatalnfo
unsigned int WINAPI GetMetaDatalnfo(SYSTEMTIME* TimeOfStart ,float *TimeFromStart, int index)

Description This function will return the time of the initial frame and the time in milliseconds of further
frames from this point.

Parameters SYSTEMTIME* TimeOfStart: Structure with start time details.
float *TimeFromStart: time in milliseconds for a particular frame from time of start.

int index: frame for which time is required.

Return unsigned int
DRV_SUCCESS Timings returned
DRV_NOT_INITIALIZED System not initialized
DRV_MSTIMINGS ERROR Invalid timing request
See also SetMetaData

SECTION 11
Page 125

ANDOR"
& A FUNCTIONS

GetMinimumimageLength

unsigned int WINAPI GetMinimumImageLength (int* MinimageLength)

Description

Parameters

Return

See also

This function will return the minimum number of pixels that can be read out from the chip
at each exposure. This minimum value arises due the way in which the chip is read out

and will limit the possible sub image dimensions and binning sizes that can be applied.

int* MinImageLength: Will contain the minimum number of super pixels on return.

unsigned int

DRV_SUCCESS Minimum Number of Pixels returned
DRV_NOT_INITIALIZED System not initialized

DRV_P1INVALID Invalid MinImagelLength value (i.e. NULL)
Setlmage

SECTION 11
Page 126

ANDOR"

FUNCTIONS

GetMostRecentColorimage16

unsigned int WINAPI GetMostRecentColorimage16 (unsigned long size, int algorithm, WORD* red,
WORD* green, WORD* blue)

Description

Parameters

Return

See also

For colour sensors only.

Color version of the GetMostRecentimage16 function. The CCD is sensitive to Cyan,
Yellow, Magenta and Green (CYMG). The Red, Green and Blue (RGB) are calculated

and Data is stored in 3 planes/images, one for each basic color.

unsigned long size: total number of pixels.

int algorithm: algorithm used to extract the RGB from the original CYMG CCD.
0: basic algorithm combining Cyan, Yellow and Magenta.
1: algorithm combining Cyan, Yellow, Magenta and Green.

WORD* red: pointer to red data storage allocated by the user.

WORD* green: pointer to red data storage allocated by the user.

WORD* blue: pointer to red data storage allocated by the user.

unsigned int

DRV_SUCCESS Image RGB has been copied into arrays.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Arrays size is incorrect.
DRV_P2INVALID Invalid algorithm.

DRV_P3INVALID Invalid red pointer (i.e. NULL)..
DRV_P4INVALID Invalid green pointer (i.e. NULL)..
DRV_P5INVALID Invalid bluepointer (i.e. NULL)..
DRV_NO_NEW_DATA There is no new data yet.

GetMostRecentimage16, Demosaiclmage, WhiteBalance.

SECTION 11
Page 127

ANDOR"

FUNCTIONS

GetMostRecentimage

unsigned int WINAPI GetMostRecentimage(at_32* arr, unsigned long size)

Description

Parameters

Return

See also

This function will update the data array with the most recently acquired image in any
acquisition mode. The data are returned as long integers (32-bit signed integers). The

"array" must be exactly the same size as the complete image.

long* arr: pointer to data storage allocated by the user.

unsigned long size: total number of pixels.

unsigned int

DRV_SUCCESS Image has been copied into array.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid pointer (i.e. NULL).
DRV_P2INVALID Array size is incorrect.
DRV_NO_NEW_DATA There is no new data yet.

GetMostRecentimage16, GetOldestimage, GetOldestimage16, Getimages

GetMostRecentimage16

unsigned int WINAPI GetMostRecentimage16(WORD* arr, unsigned long size)

Description
Parameters

Return

See also

16-bit version of the GetMostRecentimage function.
WORD* arr: pointer to data storage allocated by the user.

unsigned long size: total number of pixels.

unsigned int

DRV_SUCCESS Image has been copied into array.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid pointer (i.e. NULL).
DRV_P2INVALID Array size is incorrect.
DRV_NO_NEW_DATA There is no new data yet.

GetMostRecentlmage, GetOldestimage 16, GetOldestimage, Getlmages

SECTION 11
Page 128

ANDOR"
o ANDY FUNCTIONS

GetMSTimingsData
unsigned int WINAPI GetMSTimingsData(SYSTEMTIME *TimeOfStart ,float *pfDifferences, int
inoOfimages)

Description THIS FUNCTION IS RESERVED.

GetMSTimingsEnabled
unsigned int WINAPI GetMSTimingsEnabled(void)

Description THIS FUNCTION IS RESERVED.

GetNewData
unsigned int WINAPI GetNewData(at_32* arr, unsigned long size)

Description Deprecated see Note:

This function will update the data array to hold data acquired so far. The data are returned
as long integers (32-bit signed integers). The “array” must be large enough to hold the
complete data set. When wused in conjunction with the SetDriverEvent and
GetAcquisitonProgress functions, the data from each scan in a kinetic series can be
processed while the acquisition is taking place.

Parameters At_* array: pointer to data storage allocated by the user.

unsigned long size: total number of pixels.

Return unsigned int
DRV_SUCCESS Data copied.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid pointer (i.e. NULL).
DRV_P2INVALID Array size is incorrect.
DRV_NO_NEW_DATA There is no new data yet.

See also SetDriverEvent, GetAcquisitionProgress, SetAcquisitionMode, GetNewData8,
GetNewData16

NOTE: Deprecated by the following functions:

e Getlmages

¢ GetMostRecentlmage

e GetOldestlimage

SECTION 11
Page 129

ANDOR"
o ANDY FUNCTIONS

GetNewData16
unsigned int WINAPI GetNewData16(WORD* arr, unsigned long size)
Description Deprecated see Note:
16-bit version of the GetNewData function.
Parameters WORD* arr: pointer to data storage allocated by the user.
unsigned long size: total number of pixels.
Return unsigned int
DRV_SUCCESS Data copied.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid pointer (i.e. NULL).
DRV_P2INVALID Array size is incorrect.
DRV_NO_NEW_DATA There is no new data yet.
NOTE: Deprecated by the following functions:
e Getlmages
o GetMostRecentimage
o GetOldestlimage
GetNewData8

unsigned int WINAPI GetNewData8(unsigned char* arr, unsigned long size)
Description Deprecated see Note:

8-bit version of the GetNewData function. This function will return the data in the lower 8
bits of the acquired data.

Parameters unsigned char* arr: pointer to data storage allocated by the user.

unsigned long size: total number of pixels.

Return unsigned int
DRV_SUCCESS Data copied.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid pointer (i.e. NULL).
DRV_P2INVALID Array size is incorrect.
DRV_NO_NEW_DATA There is no new data yet.

NOTE: Deprecated by the following functions:

o Getlmages

¢ GetMostRecentlmage

e GetOldestlimage

SECTION 11
Page 130

ANDOR"

FUNCTIONS

GetNewFloatData

unsigned int WINAPI GetNewFloatData(float* arr, unsigned long size)

Description

THIS FUNCTION IS RESERVED.

GetNumberADChannels

unsigned int WINAPI GetNumberADChannels(int* channels)

Description

Parameters
Return

See also

As your Andor SDK system may be capable of operating with more than one A-D
converter, this function will tell you the number available.

int* channels: number of allowed channels

unsigned int

DRV_SUCCESS Number of channels returned.
SetADChannel

GetNumberAmp

unsigned int WINAPI GetNumberAmp(int* amp)

Description

Parameters
Return

See also

As your Andor SDK system may be capable of operating with more than one output
amplifier, this function will tell you the number available.

int* amp: number of allowed channels

unsigned int

DRV_SUCCESS Number of output amplifiers returned.
SetOutputAmplifier

GetNumberAvailablelmages

unsigned int WINAPI GetNumberAvailablelmages (at_32* first, at_32* last)

Description

Parameters

Return

See also

This function will return information on the number of available images in the circular
buffer. This information can be used with Getimages to retrieve a series of images. If any
images are overwritten in the circular buffer they no longer can be retrieved and the

information returned will treat overwritten images as not available.

at_32* first: returns the index of the first available image in the circular buffer.

at_32* last: returns the index of the last available image in the circular buffer.

unsigned int

DRV_SUCCESS Number of acquired images returned
DRV_NOT_INITIALIZED System not initialized
DRV_ERROR_ACK Unable to communicate with card
DRV_NO_NEW_DATA There is no new data yet

Getlmages, Getlmages16, GetNumberNewlmages.

SECTION 11
Page 131

ANDOR"
& A FUNCTIONS

GetNumberDevices
unsigned int WINAPI GetNumberDevices (int* numDevs)

Description THIS FUNCTION IS RESERVED.

GetNumberFKVShiftSpeeds
unsigned int WINAPI GetNumberFKVShiftSpeeds(int* number)

Description As your Andor SDK system is capable of operating at more than one fast kinetics vertical

shift speed this function will return the actual number of speeds available.

Parameters int* number: number of allowed speeds

Return unsigned int
DRV_SUCCESS Number of speeds returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.

See also GetFKVShiftSpeedF, SetFKVShiftSpeed

NOTE: Only available if camera is Classic or iStar.

GetNumberHorizontalSpeeds
unsigned int WINAPI GetNumberHorizontalSpeeds(int* number)

Description Deprecated see Note:

As your Andor SDK system is capable of operating at more than one horizontal shift
speed this function will return the actual number of speeds available.

Parameters int* number: number of allowed horizontal speeds

Return unsigned int
DRV_SUCCESS Number of speeds returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.

See also GetHorizontalSpeed, SetHorizontalSpeed

NOTE: Deprecated by GetNumberHSSpeeds

SECTION 11
Page 132

ANDOR"
& A FUNCTIONS

GetNumberHSSpeeds
unsigned int WINAPI GetNumberHSSpeeds(int channel, int typ, int* speeds)

Description As your Andor SDK system is capable of operating at more than one horizontal shift speed
this function will return the actual number of speeds available.

Parameters int channel: the AD channel.
int typ: output amplification.
Valid values: 0 electron multiplication.
1 conventional.

int* speeds: number of allowed horizontal speeds

Return unsigned int
DRV_SUCCESS Number of speeds returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_P1INVALID Invalid channel.
DRV_P2INVALID Invalid horizontal read mode
See also GetHSSpeed, SetHSSpeed, GetNumberADChannels

GetNumberNewlmages
unsigned int WINAPI GetNumberNewlmages(long* first, long* last)

Description This function will return information on the number of new images (i.e. images which have
not yet been retrieved) in the circular buffer. This information can be used with
Getlmages to retrieve a series of the latest images. If any images are overwritten in the
circular buffer they can no longer be retrieved and the information returned will treat

overwritten images as having been retrieved.

Parameters long* first: returns the index of the first available image in the circular buffer.

long* last: returns the index of the last available image in the circular buffer.

Return unsigned int
DRV_SUCCESS Number of acquired images returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_NO_NEW_DATA There is no new data yet.

See also Getlmages, Getlmages16, GetNumberAvailablelmages

Note: This index will increment as soon as a single accumulation has been completed within the current
acquisition.

SECTION 11
Page 133

ANDOR"

FUNCTIONS

GetNumberPreAmpGains

unsigned int WINAPI GetNumberPreAmpGains(int* noGains)

Description

Parameters
Return

See also

Available in some systems are a number of pre amp gains that can be applied to the
data as it is read out. This function gets the number of these pre amp gains available.

The functions GetPreAmpGain and SetPreAmpGain can be used to specify which of

these gains is to be used.

int* noGains: number of allowed pre amp gains

unsigned int

DRV_SUCCESS Number of pre amp gains returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.

IsPreAmpGainAvailable, GetPreAmpGain, SetPreAmpGain, GetCapabilities

GetNumberRingExposureTimes

unsigned int WINAPI GetNumberRingExposureTimes (int * ipnumTimes)

Description
Parameters

Return

See also

Gets the number of exposures in the ring at this moment.

int * ipnumTimes: Numberof exposure times.

unsigned int
DRV_SUCCESS Success
DRV_NOT_INITIALIZED System not initialized

SetRingExposureTimes

GetNumberlO

unsigned int WINAPI GetNumberlO(int* iNumber)

Description

Parameters
Return

See also

Available in some systems are a number of 10’s that can be configured to be inputs or
outputs. This function gets the number of these IO’s available. The functions
GetlODirection, GetlOLevel, SetlODirection and SetlOLevel can be used to specify the
configuration.

int* iINumber: number of allowed 10’s

unsigned int

DRV_SUCCESS Number of 1O’s returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid parameter.
DRV_NOT_AVAILABLE Feature not available.

GetlOLevel GetlODirection SetlODirection SetlOLevel

SECTION 11
Page 134

ANDOR"
& A FUNCTIONS

GetNumberVerticalSpeeds

unsigned int WINAPI GetNumberVerticalSpeeds(int* number)

Description

Parameters
Return

See also

Deprecated see Note:

As your Andor system may be capable of operating at more than one vertical shift speed
this function will return the actual number of speeds available.

int* number: number of allowed vertical speeds

unsigned int

DRV_SUCCESS Number of speeds returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.

GetVerticalSpeed, SetVerticalSpeed

NOTE: Deprecated by GetNumberVSSpeeds

GetNumberVSAmplitudes

unsigned int WINAPI GetNumberVSAmplitudes (int* number)

Description

Parameters
Return

This function will normally return the number of vertical clock voltage amplitues that the
camera has.

int *number:

unsigned int

DRV_SUCCESS Number returned
DRV_NOT_INITIALIZED System not initialized
DRV_NOT_AVAILABLE Your system does not support this feature

GetNumberVSSpeeds

unsigned int WINAPI GetNumberVSSpeeds(int* speeds)

Description

Parameters
Return

See also

As your Andor system may be capable of operating at more than one vertical shift speed
this function will return the actual number of speeds available.

int* speeds: number of allowed vertical speeds

unsigned int

DRV_SUCCESS Number of speeds returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.

GetVSSpeed, SetVSSpeed, GetFastestRecommendedVSSpeed

SECTION 11
Page 135

ANDOR"
o ANDY FUNCTIONS

GetOldestimage
unsigned int WINAPI GetOldestimage(at_32* arr, unsigned long size)

Description This function will update the data array with the oldest image in the circular buffer. Once
the oldest image has been retrieved it no longer is available. The data are returned as
long integers (32-bit signed integers). The "array" must be exactly the same size as the
full image.

Parameters at_32* arr: pointer to data storage allocated by the user.

unsigned long size: total number of pixels.

Return unsigned int
DRV_SUCCESS Image has been copied into array.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid pointer (i.e. NULL).
DRV_P2INVALID Array size is incorrect.
DRV_NO_NEW_DATA There is no new data yet.

See also GetOldestimage 16, GetMostRecentimage, GetMostRecentimage16

GetOldestimage16
unsigned int WINAPI GetOldestimage16(WORD* arr, unsigned long size)

Description 16-bit version of the GetOldestimage function.
Parameters WORD* arr: pointer to data storage allocated by the user.

unsigned long size: total number of pixels.

Return unsigned int
DRV_SUCCESS Image has been copied into array.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid pointer (i.e. NULL).
DRV_P2INVALID Array size is incorrect.
DRV_NO_NEW_DATA There is no new data yet.

See also GetOldestimage, GetMostRecentimage16, GetMostRecentimage

SECTION 11
Page 136

ANDOR"
o ANDY FUNCTIONS

GetPhysicalDMAAddress

unsigned int WINAPI GetPhysicalDMAAddress (unsigned long* Address1, unsigned long* Address2)
Description THIS FUNCTION IS RESERVED.

GetPixelSize
unsigned int WINAPI GetPixelSize(float* xSize, float* ySize)

Description This function returns the dimension of the pixels in the detector in microns.
Parameters float* xSize: width of pixel.

float* ySize: height of pixel.

Return unsigned int
DRV_SUCCESS Pixel size returned.

GetPreAmpGain
unsigned int WINAPI GetPreAmpGain(int index, float* gain)

Description For those systems that provide a number of pre amp gains to apply to the data as it is read
out; this function retrieves the amount of gain that is stored for a particular index. The

number of gains available can be obtained by calling the GetNumberPreAmpGains

function and a specific Gain can be selected using the function SetPreAmpGain.

Parameters int index: gain index
Valid values: 0 to GetNumberPreAmpGains()-1

float* gain: gain factor for this index.

Return unsigned int
DRV_SUCCESS Gain returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid index.
See also IsPreAmpGainAvailable, GetNumberPreAmpGains, SetPreAmpGain, GetCapabilities

SECTION 11
Page 137

ANDOR"

FUNCTIONS

GetReadOutTime

unsigned int WINAPI GetReadOutTime(float* ReadoutTime)

Description

Parameters

Return

See also

NOTES

This function will return the time to readout data from a sensor. This function should be
used after all the acquisitions settings have been set, e.g. SetExposureTime,
SetKineticCycleTime and SetReadMode etc. The value returned is the actual times used

in subsequent acquisitions.

float* ReadoutTime: valid readout time in seconds

unsigned int

DRV_SUCCESS Timing information returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_CODES Error communicating with camera.

GetAcquisitionTimings GetKeepCleanTime

NOTE: Available on iDus, iXon, Luca & Newton.

GetRegisterDump

unsigned int WINAPI GetRegisterDump (int* mode)

Description

THIS FUNCTION IS RESERVED.

GetRingExposureRange

unsigned int WINAPI GetRingExposureRange (float * fpMin, float * fpMax)

Description

Parameters

Return

See also

With the Ring Of Exposure feature there may be a case when not all exposures can be
met. The ring of exposure feature will guarantee that the highest exposure will be met but
this may mean that the lower exposures may not be. If the lower exposures are too low
they will be increased to the lowest value possible. This function will return these upper

and lower values.
float * fpMin: Minimum exposure

float * fpMax: Maximum exposure.

unsigned int

DRV_SUCCESS Min and max returned
DRV_NOT_INITIALIZED System not initialize
DRV_INVALID_MODE Trigger mode is not available

GetCapabilities, GetNumberRingExposureTimes, IsTriggerModeAvailable,

SetRingExposureTimes

SECTION 11
Page 138

ANDOR"
o ANDY FUNCTIONS

GetSizeOfCircularBuffer
unsigned int WINAPI GetSizeOfCircularBuffer(long* index)

Description This function will return the maximum number of images the circular buffer can store
based on the current acquisition settings.

Parameters long* index: returns the maximum number of images the circular buffer can store.
Return unsigned int
DRV_SUCCESS Maximum number of images returned.
DRV_NOT_INITIALIZED System not initialized.

GetSlotBusDeviceFunction
unsigned int WINAPI GetSlotBusDeviceFunction (DWORD *dwSlot, DWORD *dwBus, DWORD
*dwDevice, DWORD *dwFunction)

Description THIS FUNCTION IS RESERVED

SECTION 11
Page 139

ANDOR"
o ANDY FUNCTIONS

GetSoftwareVersion
unsigned int WINAPI GetSoftwareVersion(unsigned int* eprom, unsigned int* cofFile, unsigned int*
vxdRev, unsigned int* vxdVer, unsigned int* dliRev, unsigned int* dliVer)

Description This function returns the Software version information for the microprocessor code and the
driver.
Parameters unsigned int* eprom: EPROM version

unsigned int* cofFile: COF file version
unsigned int *vxdRev: Driver revision number
unsigned int *vxdVer: Driver version number
unsigned int *dlIRev: DLL revision number

unsigned int *dllVer: DLL version number

Return unsigned int
DRV_SUCCESS Version information returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.

GetSpoolProgress
unsigned int WINAPI GetSpoolProgress(long* index)

Description Deprecated see Note:

This function will return information on the progress of the current spool operation. The

value returned is the number of images that have been saved to disk during the current

kinetic scan.
Parameters long* index: returns the number of files saved to disk in the current kinetic scan.
Return unsigned int
DRV_SUCCESS Spool progress returned.
DRV_NOT_INITIALIZED System not initialized.
See also SetSpool

NOTE: Deprecated by GetTotalNumberlmagesAcquired

SECTION 11
Page 140

ANDOR"
-

TECHNOLOGY FUNCTIONS
GetStatus
unsigned int WINAPI GetStatus(int* status)
Description This function will return the current status of the Andor SDK system. This function should

be called before an acquisition is started to ensure that it is IDLE and during an acquisition
to monitor the process.

Parameters int* status: current status
DRV_IDLE IDLE waiting on instructions.
DRV_TEMPCYCLE Executing temperature cycle.
DRV_ACQUIRING Acquisition in progress.
DRV_ACCUM_TIME_NOT_MET Unable to meet Accumulate cycle time.
DRV_KINETIC_TIME_NOT_MET Unable to meet Kinetic cycle time.
DRV_ERROR_ACK Unable to communicate with card.
DRV_ACQ_BUFFER Computer unable to read the data via the ISA slot

at the required rate.

DRV_SPOOLERROR Overflow of the spool buffer.

Return unsigned int
DRV_SUCCESS Status returned
DRV_NOT_INITIALIZED System not initialized

See also SetTemperature, StartAcquisition

NOTE: If the status is one of the following:
e DRV_ACCUM_TIME_NOT_MET
e DRV_KINETIC_TIME_NOT_MET
¢ DRV_ERROR_ACK
e DRV_ACQ_BUFFER

then the current acquisition will be aborted automatically.

SECTION 11
Page 141

ANDOR"

FUNCTIONS

GetTemperature

unsigned int WINAPI GetTemperature(int* temperature)

Description

the status of cooling process.

Parameters

Return unsigned int

DRV_NOT_INITIALIZED
DRV_ACQUIRING
DRV_ERROR_ACK
DRV_TEMP_OFF
DRV_TEMP_STABILIZED
DRV_TEMP_NOT_REACHED
DRV_TEMP_DRIFT
DRV_TEMP_NOT_STABILIZED

See also

This function returns the temperature of the detector to the nearest degree. It also gives

int* temperature: temperature of the detector

System not initialized.

Acquisition in progress.

Unable to communicate with card.

Temperature is OFF.

Temperature has stabilized at set point.
Temperature has not reached set point.
Temperature had stabilized but has since drifted

Temperature reached but not stabilized

GetTemperatureF, SetTemperature, CoolerON, CoolerOFF, GetTemperatureRange

GetTemperatureF

unsigned int WINAPI GetTemperatureF(float* temperature)

Description

cooling process.

Parameters

Return unsigned int

DRV_NOT_INITIALIZED
DRV_ACQUIRING
DRV_ERROR_ACK
DRV_TEMP_OFF
DRV_TEMP_STABILIZED
DRV_TEMP_NOT_REACHED
DRV_TEMP_DRIFT
DRV_TEMP_NOT_STABILIZED

See also

This function returns the temperature in degrees of the detector. It also gives the status of

float* temperature: temperature of the detector

System not initialized.

Acquisition in progress.

Unable to communicate with card.

Temperature is OFF.

Temperature has stabilized at set point.
Temperature has not reached set point.
Temperature had stabilised but has since drifted

Temperature reached but not stabilized

GetTemperature, SetTemperature, CoolerON, CoolerOFF, GetTemperatureRange

SECTION 11

Page 142

ANDOR"
o ANDY FUNCTIONS

GetTemperatureRange
unsigned int WINAPI GetTemperatureRange(int* mintemp, int* maxtemp)
Description This function returns the valid range of temperatures in centigrads to which the detector
can be cooled.
Parameters int* mintemp: minimum temperature
int* maxtemp: maximum temperature
Return unsigned int
DRV_SUCCESS Temperature range returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
See also GetTemperature, GetTemperatureF, SetTemperature, CoolerON, CoolerOFF
GetTemperatureStatus

unsigned int WINAPI GetTemperatureStatus (float *SensorTemp, float *TargetTemp, float
*AmbientTemp, float *CoolerVolts)

Description THIS FUNCTION IS RESERVED.

GetTotalNumberlmagesAcquired
unsigned int WINAPI GetTotalNumberimagesAcquired(long* index)

Description This function will return the total number of images acquired since the current acquisition
started. If the camera is idle the value returned is the number of images acquired during
the last acquisition.

Parameters long* index: returns the total number of images acquired since the acquisition started.
Return unsigned int
DRV_SUCCESS Number of acquired images returned.
DRV_NOT_INITIALIZED System not initialized.
SECTION 11

Page 143

TECHNOLOGY

ANDOR"
-

FUNCTIONS

GetlODirection

unsigned int WINAPI GetlODirection(int index, int* iDirection)

Description

Available in some systems are a number of 10’s that can be configured to be inputs or

outputs. This function gets the current state of a particular 10.

Parameters int index: 10 index

Valid values: 0 toGetNumberlO() - 1
int* iDirection: current direction for this index.

0: Input
1: Output
Return unsigned int
DRV_SUCCESS

DRV_NOT_INITIALIZED
DRV_ACQUIRING
DRV_P1INVALID
DRV_P2INVALID
DRV_NOT_AVAILABLE

See also

IO direction returned.
System not initialized.
Acquisition in progress.
Invalid index.

Invalid parameter.

Feature not available.

GetNumberlO GetlOLevel SetlODirection SetlOLevel

GetlOLevel

unsigned int WINAPI GetlOLevel(int index, int* iLevel)

Description

Available in some systems are a number of IO’s that can be configured to be inputs or

outputs. This function gets the current state of a particular 10.

Parameters int index: 1O index

Valid values: 0 toGetNumberlO() - 1
int* iLevel: current level for this index.

0: Low
1: High
Return unsigned int

DRV_SUCCESS
DRV_NOT_INITIALIZED
DRV_ACQUIRING
DRV_P1INVALID
DRV_P2INVALID
DRV_NOT_AVAILABLE

See also

IO level returned.
System not initialized.
Acquisition in progress.
Invalid index.

Invalid parameter.

Feature not available.

GetNumberlO GetlODirection SetlODirection SetlOLevel

SECTION 11

Page 144

ANDOR"
o ANDY FUNCTIONS

GetVersioninfo
unsigned int WINAPI GetVersioninfo (AT_Versioninfold arr, char* szVersioninfo, at_u32
ui32BufferLen)

Description This function retrieves version information about different aspects of the Andor system. The
information is copied into a passed string buffer. Currently, the version of the SDK and the
Device Driver (USB or PCI) is supported.
Parameters AT _VersionInfold arr:
AT_SDKVersion: requests the SDK version information
AT_DeviceDriverVersion: requests the device driver version
char* szVersionInfo: A user allocated array of characters for storage of the information

at_u32 ui32BufferLen: The size of the passed character array, versioninfo.

Return unsigned int
DRV_SUCCESS Information returned
DRV_NOT_INITIALIZED System not initialized
DRV_P1INVALID Invalid information type requested
DRV_P2INVALID Storage array pointer is NULL
DRV_P3INVALID Size of the storage array is zero
See also GetHeadModel, GetCameraSerialNumber, GetCameralnformation, GetCapabilities

GetVerticalSpeed
unsigned int WINAPI GetVerticalSpeed(int index, int* speed)

Description Deprecated see Note:

As your Andor system may be capable of operating at more than one vertical shift speed
this function will return the actual speeds available. The value returned is in

microseconds per pixel shift.

Parameters int index: speed required
Valid values 0 to GetNumberVerticalSpeeds()-1

int* speed: speed in microseconds per pixel shift.

Return unsigned int
DRV_SUCCESS Speed returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid index.

See also GetNumberVerticalSpeeds, SetVerticalSpeed

NOTE: Deprecated by GetVSSpeed.

SECTION 11
Page 145

ANDOR"
& A FUNCTIONS

GetVirtualDMAAddress
unsigned int WINAPI GetVirtualDMAAddress(void** Address1, void** Address2)

Description THIS FUNCTION IS RESERVED.

GetVSSpeed
unsigned int WINAPI GetVSSpeed(int index, float* speed)

Description As your Andor SDK system may be capable of operating at more than one vertical shift
speed this function will return the actual speeds available. The value returned is in
microseconds.

Parameters int index: speed required
Valid values 0 to GetNumberVSSpeeds()-1

float* speed: speed in microseconds per pixel shift.

Return unsigned int
DRV_SUCCESS Speed returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid index.

See also GetNumberVSSpeeds, SetVSSpeed, GetFastestRecommendedVSSpeed

SECTION 11
Page 146

ANDOR"

FUNCTIONS

GPIBReceive

unsigned int WINAPI GPIBReceive(int id, short address, char* text, int size)

Description

Parameters

Return

See also

This function reads data from a device until a byte is received with the EOI line asserted
or until size bytes have been read.

int id: The interface board number
short address: Address of device to send data
char* text: The data to be sent

int size: Number of characters to read

unsigned int

DRV_SUCCESS Data received.

DRV_P3INVALID Invalid pointer (e.g. NULL).
Other errors may be returned by the GPIB device.
Consult the help documentation supplied with these
devices

GPIBSend

GPIBSend

unsigned int WINAPI GPIBSend(int id, short address, char* text)

Description

Parameters

Return

See also

This function initializes the GPIB by sending interface clear. Then the device described
by address is put in a listen-active state. Finally the string of characters, text, is sent to
the device with a newline character and with the EOI line asserted after the final

character.

int id: The interface board number
short address: Address of device to send data
char* text: The data to be sent

unsigned int
DRV_SUCCESS Data sent.
DRV_P3INVALID Invalid pointer (e.g. NULL).
The GPIB device may return other errors. Consult the
help documentation supplied with these devices
GPIBReceive

SECTION 11
Page 147

ANDOR"

FUNCTIONS
12CBurstRead
unsigned int WINAPI I12CBurstRead(BYTE i2cAddress, long nBytes, BYTE* data)
Description This function will read a specified number of bytes from a chosen device attached to the
I°C data bus.
Parameters BYTE i2cAddress: The address of the device to read from.
long nBytes: The number of bytes to read from the device.
BYTE* data: The data read from the device.
Return unsigned int
DRV_SUCCESS Read successful.
DRV_VXDNOTINSTALLED VxD not loaded.
DRV_INIERROR Unable to load “DETECTOR.INI".
DRV_COFERROR Unable to load “*.COF”.
DRV_FLEXERROR Unable to load “*.RBF”.
DRV_ERROR_ACK Unable to communicate with card.
DRV_I2CDEVNOTFOUND Could not find the specified device.
DRV_I2CTIMEOUT Timed out reading from device.
DRV_UNKNOWN_FUNC Unknown function, incorrect cof file.
See also 12CBurstWrite, I2CRead, 12CWrite, 12cReset
12CBurstWrite
unsigned int WINAPI I12CBurstWrite(BYTE i2cAddress, long nBytes, BYTE* data)
Description This function will write a specified number of bytes to a chosen device attached to the I°’c
data bus.
Parameters BYTE i2cAddress: The address of the device to write to.
long nBytes: The number of bytes to write to the device.
BYTE* data: The data to write to the device.
Return unsigned int
DRV_SUCCESS Write successful.
DRV_VXDNOTINSTALLED VxD not loaded.
DRV_INIERROR Unable to load “DETECTOR.INI".
DRV_COFERROR Unable to load “*.COF”.
DRV_FLEXERROR Unable to load “*.RBF”.
DRV_ERROR_ACK Unable to communicate with card.
DRV_I2CDEVNOTFOUND Could not find the specified device.
DRV_I2CTIMEOUT Timed out reading from device.
DRV_UNKNOWN_FUNC Unknown function, incorrect cof file.
See also I2CBurstRead, I2CRead, 12CWrite, 12cReset
SECTION 11

Page 148

ANDOR"
-

TECHNOLOGY FUNCTIONS
I12CRead
unsigned int WINAPI I2CRead(BYTE devicelD, BYTE intAddress, BYTE* pdata)
Description This function will read a single byte from the chosen device.
Parameters BYTE devicelD: The device to read from.
BYTE intAddress: The internal address of the device to be read from.
BYTE* pdata: The byte read from the device.
Return unsigned int
DRV_SUCCESS Read successful.
DRV_VXDNOTINSTALLED VxD not loaded.
DRV_INIERROR Unable to load “DETECTOR.INI".
DRV_COFERROR Unable to load “*.COF”.
DRV_FLEXERROR Unable to load “*.RBF”.
DRV_ERROR_ACK Unable to communicate with card.
DRV_I2CDEVNOTFOUND Could not find the specified device.
DRV_I2CTIMEOUT Timed out reading from device.
DRV_UNKNOWN_FUNC Unknown function, incorrect cof file.
See also 12CBurstWrite, 12CBurstRead, [2CWrite, 12cReset
I2CReset
unsigned int WINAPI I2CReset(void)
Description This function will reset the 1°C data bus.
Parameters
Return unsigned int
DRV_SUCCESS Reset successful.
DRV_VXDNOTINSTALLED VxD not loaded.
DRV_INIERROR Unable to load “DETECTOR.INI".
DRV_COFERROR Unable to load “*.COF”.
DRV_FLEXERROR Unable to load “*.RBF”.
DRV_ERROR_ACK Unable to communicate with card.
DRV_I2CTIMEOUT Timed out reading from device.
DRV_UNKNOWN_FUNC Unknown function, incorrect cof file.
See also 12CBurstWrite, [2CBurstRead,|2CRead, 1I2CWrite
SECTION 11

Page 149

ANDOR"

FUNCTIONS
I2CWrite
unsigned int WINAPI I2CWrite(BYTE devicelD, BYTE intAddress, BYTE data)
Description This function will write a single byte to the chosen device.
Parameters BYTE devicelD: The device to write to.
BYTE intAddress: The internal address of the device to write to.
BYTE data: The byte to be written to the device.
Return unsigned int
DRV_SUCCESS Write successful.
DRV_VXDNOTINSTALLED VxD not loaded.
DRV_INIERROR Unable to load “DETECTOR.INI".
DRV_COFERROR Unable to load “*.COF”.
DRV_FLEXERROR Unable to load “*.RBF”.
DRV_ERROR_ACK Unable to communicate with card.
DRV_I2CDEVNOTFOUND Could not find the specified device.
DRV _I12CTIMEOUT Timed out reading from device.
DRV_UNKNOWN_FUNC Unknown function, incorrect cof file.
See also 12CBurstWrite, 1I2CBurstRead, I2CRead, 12cReset
IdAndorDII
unsigned int WINAPI IdAndorDII (void)
Description THIS FUNCTION IS RESERVED.
InAuxPort
unsigned int WINAPI InAuxPort(int port, int* state)
Description This function returns the state of the TTL Auxiliary Input Port on the Andor plug-in card.
Parameters int port: Number of AUX in port on Andor card
Valid Values 1 to 4
int* state: current state of port
0 OFF/LOW
all otherON/HIGH
Return unsigned int
DRV_SUCCESS AUX read.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_VXDNOTINSTALLED VxD not loaded.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid port id.
See also OutAuxPort
SECTION 11

Page 150

ANDOR"
& A FUNCTIONS

Initialize
unsigned int WINAPI Initialize(char* dir)

Description This function will initialize the Andor SDK System. As part of the initialization procedure on
some cameras (i.e. Classic, iStar and earlier iXion) the DLL will need access to a

DETECTOR.INI which contains information relating to the detector head, number pixels,
readout speeds etc. If your system has multiple cameras then see the section Controlling

multiple cameras

Parameters char* dir: Path to the directory containing the files

Return unsigned int
DRV_SUCCESS Initialisation successful.
DRV_VXDNOTINSTALLED VxD not loaded.
DRV_INIERROR Unable to load “DETECTOR.INI".
DRV_COFERROR Unable to load “*.COF”.
DRV_FLEXERROR Unable to load “*.RBF”.
DRV_ERROR_ACK Unable to communicate with card.
DRV_ERROR_FILELOAD Unable to load “*.COF” or “*.RBF” files.
DRV_ERROR_PAGELOCK Unable to acquire lock on requested memory.
DRV_USBERROR Unable to detect USB device or not USB2.0.
DRV_ERROR_NOCAMERA No camera found

See also GetAvailableCameras, SetCurrentCamera, GetCurrentCamera

InitializeDevice

unsigned int WINAPI InitializeDevice(char * dir)

Description THIS FUNCTION IS RESERVED.

SECTION 11
Page 151

ANDOR"

FUNCTIONS

IsCoolerOn

unsigned int WINAPI IsCoolerOn (int* iCoolerStatus)

Description

Parameters

Return

See also

This function checks the status of the cooler.

int* iCoolerStatus: 0: Cooler is OFF.

1: Cooler is ON.
unsigned int
DRV_SUCCESS Status returned.
DRV_NOT_INITIALIZED System not initialized
DRV_P1INVALID Parameter is NULL

CoolerON CoolerOFF

IsinternalMechanicalShutter

unsigned int WINAPI IsinternalMechanicalShutter (int* InternalShutter)

Description

Parameters

Return

NOTE

This function checks if an iXon camera has a mechanical shutter installed.

int* InternalShutter: 0: Mechanical shutter not installed.
1: Mechanical shutter installed.

unsigned int

DRV_SUCCESS Internal Shutter state returned
DRV_NOT_AVAILABLE Not an iXon camera.
DRV_P1INVALID Parameter is NULL

Available only on iXon.

IsAmplifierAvailable

unsigned int WINAPI IsAmplifierAvailable(int iamp)

Description

Parameters

Return

See also

This function checks if the hardware and current settings permit the use of the specified

amplifier.

int iamp: amplifier to check.

unsigned int
DRV_SUCCESS Amplifier available
DRV_NOT_INITIALIZED System not initialized

DRV_INVALID_AMPLIFIER Not a valid amplifier

SetHSSpeed

SECTION 11
Page 152

ANDOR"

FUNCTIONS

IsPreAmpGainAuvailable

unsigned int WINAPI IsPreAmpGainAvailable(int channel, int amplifier, int index, int pa, int* status)

Description

Parameters

Return

See also

This function checks that the AD channel exists, and that the amplifier, speed and gain
are available for the AD channel.

int channel: AD channel index.

int amplifier: Type of output amplifier.

int index: Channel speed index.

int pa: PreAmp gain index.

int* status: 0: PreAmpGain not available.

1: PreAmpGain Available.

unsigned int

DRV_SUCCESS PreAmpGain status returned.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid channel.
DRV_P2INVALID Invalid amplifier.
DRV_P3INVALID Invalid speed index.
DRV_P4INVALID Invalid gain.

GetNumberPreAmpGains, GetPreAmpGain, SetPreAmpGain

NOTE: Available only on iXon.

IsTriggerModeAuvailable

unsigned int WINAPI IsTriggerModeAvailable(int iTriggerMode)

Description

Parameters

Return

See also

This function checks if the hardware and current settings permit the use of the specified
trigger mode.

int iTriggerMode: Trigger mode to check.

unsigned int

DRV_SUCCESS Trigger mode available
DRV_NOT_INITIALIZED System not initialize
DRV_INVALID_MODE Not a valid mode

SetTriggerMode

SECTION 11
Page 153

ANDOR"
& A FUNCTIONS

Merge
unsigned int WINAPI Merge(const at_32* arr, long nOrder, long nPoint, long nPixel, float* coeff, long
fit,long hbin, at_32* output, float* start, float* step)

Description THIS FUNCTION IS RESERVED.

OutAuxPort
unsigned int WINAPI OutAuxPort(int port, int state)
Description This function sets the TTL Auxiliary Output port (P) on the Andor plug-in card to either
ON/HIGH or OFF/LOW.
Parameters int port: Number of AUX out port on Andor card
Valid Values 1 to 4
int state: state to put port in
0 OFF/LOW
all others ON/HIGH
Return unsigned int
DRV_SUCCESS AUX port set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_VXDNOTINSTALLED VxD not loaded.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid port id.
See also InAuxPort
SECTION 11

Page 154

ANDOR"

FUNCTIONS

PrepareAcquisition

unsigned int WINAPI PrepareAcquisition(void)

Description

Parameters
Return

See also

This function reads the current acquisition setup and allocates and configures any
memory that will be used during the acquisition. The function call is not required as it will
be called automatically by the StartAcquisition function if it has not already been called

externally.

However for long kinetic series acquisitions the time to allocate and configure any
memory can be quite long which can result in a long delay between -calling
StartAcquisition and the acquisition actually commencing. For iDus, there is an additional
delay caused by the camera being set-up with any new acquisition parameters. Calling

PrepareAcaquisition first will reduce this delay in the StartAcquisition call.

NONE

unsigned int

DRV_SUCCESS Acquisition prepared.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_VXDNOTINSTALLED VxD not loaded.

DRV_ERROR_ACK Unable to communicate with card.
DRV_INIERROR Error reading “DETECTOR.INI”.
DRV_ACQERROR Acquisition settings invalid.
DRV_ERROR_PAGELOCK Unable to allocate memory.
DRV_INVALID_FILTER Filter not available for current acquisition.
DRV_IOCERROR Integrate On Chip setup error.
DRV_BINNING_ERROR Range not multiple of horizontal binning.

StartAcquisition, FreelnternalMemory,

SECTION 11
Page 155

ANDOR"
o ANDY FUNCTIONS

SaveAsBmp
unsigned int WINAPI SaveAsBmp(char* path, char* palette, long ymin, long ymax)

Description This function saves the last acquisition as a bitmap file, which can be loaded into an
imaging package. The palette parameter specifies the location of a .PAL file, which
describes the colors to use in the bitmap. This file consists of 256 lines of ASCII text;
each line containing three numbers separated by spaces indicating the red, green and

blue component of the respective color value.

The ymin and ymax parameters indicate which data values will map to the first and last
colors in the palette:

e All data values below or equal to ymin will be colored with the first color.
e All values above or equal to ymax will be colored with the last color
e All other palette colors will be scaled across values between these limits.

Parameters char* path: The filename of the bitmap.
char* palette: The filename of a palette file (.PAL) for applying color to the bitmap.
long ymin, long ymax: Range of data values that palette will be scaled across. If set to 0,

0 the palette will scale across the full range of values.

Return unsigned int
DRV SUCCESS Data successfully saved as bitmap.
DRV_NOT INITIALIZED System not initialized.
DRV_ACQIJIRING Acquisition in progress.
DRV_ERROR ACK Unable to communicate with card.
DRV_P1INVALID Path invalid.

File too large to be generated in memory.
DRV_ERROR_PAGELOCK

See also SaveAsSif SaveAsEDF SaveAsFITS SaveAsRaw SaveAsSPC SaveAsTiff
NOTE: If the last acquisition was in Kinetic Series mode, each image will be saved in a separate

Bitmap file. The filename specified will have an index number appended to it, indicating the position
in the series.

SECTION 11
Page 156

ANDOR"

FUNCTIONS

SaveAsCommentedSif

unsigned int WINAPI SaveAsCommentedSif(char* path, char* comment)

Description

Parameters

Return

See also

This function will save the data from the last acquisition into a file. The comment text will
be added to the user text portion of the Sif file.

char* path: pointer to a filename specified by the user.
char* comment: comment text to add to the sif file

unsigned int

DRV_SUCCESS Data saved.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid filename.

SetSifComment SaveAsSif SaveAsEDF SaveAsFITS SaveAsRaw SaveAsSPC
SaveAsTiff SaveAsBmp

NOTE: The comment used in SIF files created with this function is discarded once the call

completes, i.e. future calls to SaveAsSif will not use this comment. To set a persistent comment use

the SetSifComment function.

SaveAsEDF

unsigned int WINAPI SaveAsEDF (char* szPath, int iMode)

Description

Parameters

Return

See also

This function saves the last acquisition in the European Synchotron Radiation Facility
Data Format (*.edf).

char* szPath: the filename to save too.
int iMode: option to save to multiple files.
Valid values: 0 Save to 1 file

1 Save kinetic series to multiple files

unsigned int

DRV_SUCCESS Data successfully saved.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Path invalid.

DRV_P2INVALID Invalid mode
DRV_ERROR_PAGELOCK File too large to be generated in memory.

SaveAsSif SaveAsFITS SaveAsRaw SaveAsSPC SaveAsTiff SaveAsBmp

SECTION 11
Page 157

ANDOR"

FUNCTIONS

SaveAsFITS

unsigned int WINAPI SaveAsFITS (char* szFileTitle, int typ)

Description

Parameters

Return

See also

This function saves the last acquisition in the FITS (Flexible Image Transport System)
Data Format (*.fits) endorsed by NASA.
char* szFileTitle: the filename to save too.
int typ:
Valid values: 0 Unsigned 16
1 Unsigned 32

2 Signed 16

3 Signed 32

4 Float
unsigned int
DRV_SUCCESS Data successfully saved.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Path invalid.
DRV_P2INVALID Invalid mode

DRV_ERROR_PAGELOCK File too large to be generated in memory.

SaveAsSif SaveAsEDF SaveAsRaw SaveAsSPC SaveAsTiff SaveAsBmp

SaveAsRaw
unsigned int WINAPI SaveAsRaw(char* szFileTitle, int typ)
Description This function saves the last acquisition as a raw data file.
Parameters char* szFileTitle: the filename to save too.
int typ:
Valid values: 1 Signed 16
2 Signed 32
3 Float
Return unsigned int
DRV_SUCCESS Data successfully saved.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Path invalid.
DRV_P2INVALID Invalid mode
DRV_ERROR_PAGELOCK File too large to be generated in memory
See also SaveAsSif SaveAsEDF SaveAsFITS SaveAsSPC SaveAsTiff SaveAsBmp
SECTION 11

Page 158

ANDOR"
* AN FUNCTIONS

SaveAsSif
unsigned int WINAPI SaveAsSif(char* path)

Description This function will save the data from the last acquisition into a file, which can be read in
by the main application. User text can be added to sif files using the
SaveAsCommentedSif and SetSifComment functions.

Parameters char* path: pointer to a filename specified by the user.

Return unsigned int
DRV_SUCCESS Data saved.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid filename.

DRV_ERROR_PAGELOCK File too large to be generated in memory.

See also SaveAsEDF SaveAsFITS SaveAsRaw SaveAsSPC SaveAsTiff SaveAsBmp
SetSifComment, SaveAsCommentedSif

SECTION 11
Page 159

ANDOR"
& A FUNCTIONS

SaveAsSPC
unsigned int WINAPI SaveAsSPC (char* path)
Description This function saves the last acquisition in the GRAMS .spc file format
Parameters char* path: the filename to save too.
Return unsigned int
DRV_SUCCESS Data successfully saved.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Path invalid.
DRV_ERROR_PAGELOCK File too large to be generated in memory.
See also SaveAsSif SaveAsEDF SaveAsFITS SaveAsRaw SaveAsTiff SaveAsBmp
SaveAsTiff
unsigned int WINAPI SaveAsTiff(char* path, char* palette, int position, int typ)
Description This function saves the last acquisition as a tiff file, which can be loaded into an imaging

package. The palette parameter specifies the location of a .PAL file, which describes the
colors to use in the tiff. This file consists of 256 lines of ASCII text; each line containing
three numbers separated by spaces indicating the red, green and blue component of the

respective color value.

The parameter position can be changed to export different scans in a kinetic series. If the
acquisition is any other mode, position should be set to 1. The parameter typ can be set
to 0, 1 or 2 which correspond to 8-bit, 16-bit and color, respectively

char* path: The filename of the tiff.

Parameters
char* palette: The filename of a palette file (.PAL) for applying color to the fiff.
int position: The number in the series, should be 1 for a single scan.
int typ: The type of tiff file to create.
Return unsigned int
DRV_SUCCESS Data successfully saved as fiff.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Path invalid.
DRV_P2INVALID Invalid palette file
DRV_P3INVALID position out of range
DRV_P4INVALID type not valid
DRV_ERROR_PAGELOCK File too large to be generated in memory.
See also SaveAsSif SaveAsEDF SaveAsFITS SaveAsRaw SaveAsSPC SaveAsBmp

SaveAsTiffEx

SECTION 11
Page 160

ANDOR"

FUNCTIONS

SaveAsTiffEx

unsigned int WINAPI SaveAsTiffEx(char* path, char* palette, int position, int typ, int mode)

Description

Parameters

Return

See also

This function saves the last acquisition as a fiff file, which can be loaded into an imaging
package. This is an extended version of the SaveAsTiff function. The palette parameter
specifies the location of a .PAL file, which describes the colors to use in the tiff. This file
consists of 256 lines of ASCII text; each line containing three numbers separated by
spaces indicating the red, green and blue component of the respective color value. The
parameter position can be changed to export different scans in a kinetic series. If the
acquisition is any other mode, position should be set to 1. The parameter typ can be set to
0, 1 or 2 which correspond to 8-bit, 16-bit and color, respectively. The mode parameter
specifies the mode of output. Data can be output scaled from the min and max count
values across the entire range of values (mode 0) or can remain unchanged (mode 1).0f
course if the count value is higher or lower than the output data range then even in mode 1
data will be scaled.

char* path: The filename of the tiff.

char* palette: The filename of a palette file (.PAL) for applying color to the fiff.
int position: The number in the series, should be 1 for a single scan.

int typ: The type of tiff file to create.

int mode: The output mode

unsigned int

DRV_SUCCESS Data successfully saved as tiff
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Path invalid.

DRV_P2INVALID Invalid palette file

DRV_P3INVALID position out of range
DRV_P4INVALIDDRV_P5INVALID type not validmode not valid
DRV_ERROR_PAGELOCK File too large to be generated in memory

SaveAsSif SaveAsEDF SaveAsFITS SaveAsRaw SaveAsSPC SaveAsTiff SaveAsBmp

SECTION 11
Page 161

ANDOR"

FUNCTIONS

SaveEEPROMTOoFile

unsigned int WINAPI SaveEEPROMToFile(char *cFileName)

Description

THIS FUNCTION IS RESERVED.

SaveToClipBoard

unsigned int WINAPI SaveToClipBoard(char* palette)

Description

THIS FUNCTION IS RESERVED.

SelectDevice

unsigned int WINAPI SelectDevice(int devNum)

Description

THIS FUNCTION IS RESERVED.

SendSoftwareTrigger

unsigned int WINAPI SendSoftwareTrigger ()

Description

Parameters
Return

See also

NOTES

This function sends an event to the camera to take an acquisition when in Software
Trigger mode. Not all cameras have this mode available to them. To check if your camera
can operate in this mode check the GetCapabilities function for the Trigger Mode
AC_TRIGGERMODE_CONTINUOUS. If this mode is physically possible and other

settings are suitable (IsTriggerModeAvailable) and the camera is acquiring then this

command will take an acquisition.

NONE

unsigned int

DRV_SUCCESS Trigger sent
DRV_NOT_INITIALIZED System not initialized
DRV_INVALID_MODE Not in SoftwareTrigger mode
DRV_IDLE Not Acquiring
DRV_ERROR_CODES Error communicating with camera
DRV_ERROR_ACK Previous acquisition not complete

GetCapabilities, IsTriggerModeAvailable, SetAcquisitionMode, SetReadMode,
SetTriggerMode

The settings of the camera must be as follows:
ReadOut mode is full image

RunMode is Run Till Abort

TriggerMode is 10

SECTION 11
Page 162

ANDOR"

FUNCTIONS

SetAccumulationCycleTime

unsigned int WINAPI SetAccumulationCycleTime(float time)

Description

Parameters
Return

See also

This function will set the accumulation cycle time to the nearest valid value not less than
the given value. The actual cycle time used is obtained by GetAcquisitionTimings. Please
refer to SECTION 5 — ACQUISITION MODES for further information.

float time: the accumulation cycle time in seconds.

unsigned int

DRV_SUCCESS Cycle time accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Exposure time invalid.

SetNumberAccumulations, GetAcquisitionTimings

SetAcqStatusEvent

unsigned int WINAPI SetAcqStatusEvent(HANDLE statusEvent)

Description

Parameters
Return

See also
NOTE

This function passes a Win32 Event handle to the driver via which the driver can inform
the user software that the camera has started exposing or that the camera has finished
exposing. To determine what event has actually occurred call the

GetCameraEventStatus funtion. This may give the user software an opportunity to

perform other actions that will not affect the readout of the current acquisition. The

SetPCIMode function must be called to enable/disable the events from the driver.

HANDLE statusEvent: Win32 event handle.

unsigned int

DRV_SUCCESS Mode set

DRV_NOT_INITIALIZED System not initialized
DRV_NOT_SUPPORTED Function not supported for operating system

GetCameraEventStatus SetPClMode
This is only available with the CCI23 PCI card.

SECTION 11
Page 163

ANDOR"
& A FUNCTIONS

SetAcquisitionMode
unsigned int WINAPI SetAcquisitionMode(int mode)

Description This function will set the acquisition mode to be used on the next StartAcquisition.
Parameters int mode: the acquisition mode.
Valid values:
1 Single Scan
2 Accumulate
3 Kinetics
4 Fast Kinetics
5 Run till abort
Return unsigned int
DRV_SUCCESS Acquisition mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Acquisition Mode invalid.
See also StartAcquisition

NOTE: In Mode 5 the system uses a “Run Till Abort” acquisition mode. In Mode 5 only, the camera

continually acquires data until the AbortAcquisition function is called. By using the SetDriverEvent

function you will be notified as each acquisition is completed.

SetAcquisitionType
unsigned int WINAPI SetAcquisitionType (int typ)

Description THIS FUNCTION IS RESERVED.

SetADChannel
unsigned int WINAPI SetADChannel(int channel)

Description This function will set the AD channel to one of the possible A-Ds of the system. This AD

channel will be used for all subsequent operations performed by the system.

Parameters int index: the channel to be used
Valid values: 0 to GetNumberADChannels-1

Return unsigned int
DRV_SUCCESS AD channel set.
DRV_P1INVALID Index is out off range.
See also GetNumberADChannels

SECTION 11
Page 164

ANDOR"
& A FUNCTIONS

SetAdvancedTriggerModeState

unsigned int WINAPI SetAdvancedTriggerModeState (int iState)

Description

Parameters

Return

See also
NOTE

This function will set the state for the iCam functionality that some cameras are capable
of. There may be some cases where we wish to prevent the software using the new
functionality and just do it the way it was previously done.

int iState:

0: turn off iCam

1: Enable iCam.

unsigned int

DRV_SUCCESS State set
DRV_NOT_INITIALIZED System not initialized
DRV_P1INVALID state invalid

iCam

By default the advanced trigger functionality is enabled.

SECTION 11
Page 165

ANDOR"
& A FUNCTIONS

SetBackground
unsigned int WINAPI SetBackground(at_32* arr, unsigned long size)

Description THIS FUNCTION IS RESERVED.

SetBaselineClamp
unsigned int WINAPI SetBaselineClamp(int state)

Description This function turns on and off the baseline clamp functionality. With this feature enabled

the baseline level of each scan in a kinetic series will be more consistent across the

sequence.
Parameters int state: Enables/Disables Baseline clamp functionality
1 — Enable Baseline Clamp
0 — Disable Baseline Clamp
Return unsigned int
DRV_SUCCESS Parameters set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_NOT_AVAILABLE Baseline Clamp not available for this camera
DRV_P1INVALID State parameter was not zero or one.

SetBaselineOffset
unsigned int WINAPI SetBaselineOffset(int offset)

Description This function allows the user to move the baseline level by the amount selected. For
example “+100” will add approximately 100 counts to the default baseline value. The

value entered should be a multiple of 100 between -1000 and +1000 inclusively.

Parameters Int offset: Amount to offset baseline by

Return unsigned int
DRV_SUCCESS Parameters set
DRV_NOT_INITIALIZED System not initialized
DRV_NOT_AVAILABLE Baseline Clamp not available for this camera
DRV_ACQUIRING Acquisition in progress
DRV_P1INVALID Offset out of range

NOTE Only available on iXon range

SECTION 11
Page 166

ANDOR"

FUNCTIONS

SetCameraStatusEnable

unsigned int WINAPI SetCameraStatusEnable(DWORD Enable)

Description

Parameters

Return

See also
NOTE

Use this function to Mask out certain types of acquisition status events. The default is to
notify on every type of event but this may cause missed events if different types of event

occur very close together. The bits in the mask correspond to the following event types:
0 — Fire pulse down event

1 — Fire pulse up event

Set the corresponding bit to 0 to disable the event type and 1 to enable the event type.

DWORD Enable: bitmask with bits set for those events about which you wish to be
notified.

unsigned int

DRV_SUCCESS Mask Set.
DRV_VXDNOTINSTALLED Device Driver not installed.

SetAcqgStatusEvent SetPClMode
Only available with PCI systems using the CCI-23 controller card

Fire pulse up event not available on USB systems.

SECTION 11
Page 167

ANDOR"

FUNCTIONS

SetCompleximage

unsigned int WINAPI SetCompleximage(int numAreas, int* areas)

Description This is a function that allows the setting up of random tracks with more options that the
SetRandomTracks function.
The minimum number of tracks is 1. The maximum number of tracks is the number of
vertical pixels.
There is a further limit to the number of tracks that can be set due to memory constraints
in the camera. It is not a fixed number but depends upon the combinations of the tracks.
For example, 20 tracks of different heights will take up more memory than 20 tracks of
the same height.
If attempting to set a series of random tracks and the return code equals
DRV_RANDOM_TRACK_ERROR, change the makeup of the tracks to have more
repeating heights and gaps so less memory is needed.
Each track must be defined by a group of six integers.
-The top and bottom positions of the tracks.
-The left and right positions for the area of interest within each track
-The horizontal and vertical binning for each track.
The positions of the tracks are validated to ensure that the tracks are in increasing order.
The left and right positions for each track must be the same.
For iXon the range is between 8 and CCD width, inclusive
For idus the range must be between 257 and CCD width, inclusive.
Horizontal binning must be an integer between 1 and 64 inclusive, for iXon.
Horizontal binning is not implementated for iDus and must be set to 1.
Vertical binning is used in the following way. A track of:
11011024 12
is actually implemented as 5 tracks of height 2. . Note that a vertical binning of 1 will have
the effect of vertically binning the entire track; otherwise vertical binning will operate as
normal.
121102411
341102411
561102411
781102411
91011024 11
Parameters int numAreas:
int * areas:
Return Unsigned int
DRV_SUCCESS Success
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Number of tracks invalid.
DRV_P2INVALID Track positions invalid.
DRV_ERROR_FILELOAD Serious internal error
DRV_RANDOM_TRACK _ERROR Invalid combination of tracks, out of memory or
mode not available.
See also SetRandomTracks
NOTE Only available with iXon+ and USB cameras.

SECTION 11
Page 168

ANDOR"

FUNCTIONS

SetCoolerMode

unsigned int WINAPI SetCoolerMode(int mode)

Description

Parameters

Return

This function determines whether the cooler is switched off when the camera is shut
down.

int mode:
1 — Temperature is maintained on ShutDown

0 — Returns to ambient temperature on ShutDown

unsigned int

DRV_SUCCESS Parameters set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID State parameter was not zero or one.
DRV_NOT_SUPPORTED Camera does not support

NOTE: Mode 0 not available on Luca R cameras — always cooled to -20.

SetCropMode

unsigned int WINAPI SetCropMode (int active, int cropHeight, int reserved)

Description

Parameters

Return

This function effectively reduces the height of the CCD by excluding some rows to
achieve higher frame rates. This is currently only available on Newton cameras when the
selected read mode is Full Vertical Binning. The cropHeight is the number of active rows
measured from the bottom of the CCD.

Note: it is important to ensure that no light falls on the excluded region otherwise the
acquired data will be corrupted.

int active: 1 - Crop mode is ON
0 — Crop mode is OFF
int cropHeight: The selected crop height. This value must be between 1 and the CCD
height
int reserved: This value should be set to 0.

unsigned int

DRV_SUCCESS Parameters set.

DRV_NOT_INITIAILIZED System not initialized.

DRV_ACQUIRING Acquisition in progress.

DRV_P1INVALID Active parameter is not zero or one.

DRV_P2INVALID Cropheight parameter is less than one or greater than
the CCD height.

DRV_P3INVALID Reserved parameter is not equal to zero.

DRV_NOT_SUPPORTED Either the camera is not a Newton or the read mode is

SECTION 11
Page 169

ANDOR"
o ANDY FUNCTIONS

not Full Vertical Binning.

See also GetDetector SetlsolatedCropMode

NOTE : Available on Newton

SD K SECTION 11

Page 170

ANDOR"
o ANDY FUNCTIONS

SetCurrentCamera
unsigned int WINAPI SetCurrentCamera(long cameraHandle)

Description When multiple Andor cameras are installed this function allows the user to select which
camera is currently active. Once a camera has been selected the other functions can be
called as normal but they will only apply to the selected camera. If only 1 camera is

installed calling this function is not required since that camera will be selected by default.

Parameters long cameraHandle: Selects the active camera

Return unsigned int
DRV_SUCCESS Camera successfully selected.
DRV_P1INVALID Invalid camera handle.

SEE ALSO : GetCurrentCamera, GetAvailableCameras, GetCameraHandle

SetCustomTrackHBin
unsigned int WINAPI SetCustomTrackHBin(int bin)

Description This function sets the horizontal binning value to be used when the readout mode is set

to Random Track.

Parameters Int bin: Binning size.

Return unsigned int
DRV_SUCCESS Binning set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid binning size.

See also SetReadMode

NOTE: For iDus, it is recommended that you set horizontal binning to 1

SECTION 11
Page 171

TECHNOLOGY

ANDOR"
-

FUNCTIONS

SetDACOutputScale

unsigned int WINAPI SetDACOutputScale(int scale)

Description

select the active one.

Parameters

Return unsigned int
DRV_SUCCESS
DRV_NOT_INITIALIZED
DRV_ACQUIRING
DRV_NOT_AVAILABLE
DRV_P1INVALID

See also SetDACOutput

Clara offers 2 configurable precision 16-bit DAC outputs. This function should be used to

int scale: 5 or 10 volt DAC range (1/2).

DAC Scale option accepted.
System not initialized.
Acquisition in progress.
Feature not available

DAC Scale value invalid.

NOTE: Only available on Andor Clara

SetDACOutput

unsigned int WINAPI SetDACOutput(int option, int resolution, int value)

Description

set the required voltage.

Parameters

Clara offers 2 configurable precision 16-bit DAC outputs. This function should be used to

int option: DAC Output Scale 1 or 2 (1/2).

int resolution: resolution of DAC can be set from 2 to 16-bit in steps of 2
int value: requested DAC value (for particular resolution)

Return unsigned int
DRV_SUCCESS
DRV_NOT_INITIALIZED
DRV_ACQUIRING
DRV_NOT_AVAILABLE
DRV_P1INVALID
DRV_P2INVALID
DRV_P3INVALID

See also SetDACOutputScale

DAC Scale option accepted.

System not initialized.

Acquisition in progress.

Feature not available.

DAC range value invalid.

Resolution unavailable.

Requested value not within DAC range.

NOTE: Only available on Andor Clara

SECTION 11
Page 172

ANDOR"
-

TECHNOLOGY FUNCTIONS
SetDataType
unsigned int WINAPI SetDataType (int typ)
Description THIS FUNCTION IS RESERVED.
SetDDGAddress

unsigned int WINAPI SetDDGAddress(BYTE t0, BYTE t1, BYTE t2, BYTE t3, BYTE address)
Description THIS FUNCTION IS RESERVED.

SetDDGGain
unsigned int WINAPI SetDDGGain(int gain)
Description Deprecated for SetMCPGain.
SetDDGGateStep
unsigned int WINAPI SetDDGGateStep(double step_Renamed)
Description This function will set a constant value for the gate step in a kinetic series. The lowest

available resolution is 25 picoseconds and the maximum permitted value is 25 seconds.

Parameters double step_Renamed: gate step in picoseconds.

Return unsigned int
DRV_SUCCESS Gate step set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Gate step invalid.

See also SetDDGTimes, SetDDGVariableGateStep

NOTE: Available on iStar.

SECTION 11
Page 173

ANDOR"
& A FUNCTIONS

SetDDGlInsertionDelay
unsigned int WINAPI SetDDGInsertionDelay(int state)

Description This function controls the length of the insertion delay.
Parameters int state: NORMAL/FAST switch for insertion delay.
Valid values: 0 to set normal insertion delay.
1 to set fast insertion delay.
Return unsigned int
DRV_SUCCESS Value for delay accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_I2CTIMEOUT I2C command timed out.
DRV_I2CDEVNOTFOUND I2C device not present.
DRV_ERROR_ACK Unable to communicate with card.
See also SetDDGIntelligate

NOTE: Available on iStar.

SetDDGiIntelligate
unsigned int WINAPI SetDDGIntelligate(int state)

Description This function controls the MCP gating. Not available when the fast insertion delay option
is selected.

Parameters int state: ON/OFF switch for the MCP gating.
Valid values: 0 to switch MCP gating OFF.

1 to switch MCP gating ON.

Return unsigned int
DRV_SUCCESS Intelligate option accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_I2CTIMEOUT I2C command timed out.
DRV_I2CDEVNOTFOUND I2C device not present.
DRV_ERROR_ACK Unable to communicate with card.

See also SetDDGInsertionDelay

NOTE: Available on iStar.

SECTION 11
Page 174

ANDOR"
-

FUNCTIONS
SetDDGIOC
unsigned int WINAPI SetDDGIOC(int state)
Description This function activates the integrate on chip (IOC) option.
Parameters int integrate: ON/OFF switch for the IOC option.
Valid values: 0 to switch 10C OFF.
1 to switch I0C ON.
Return unsigned int
DRV_SUCCESS IOC option accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_I2CTIMEOUT I2C command timed out.
DRV_I2CDEVNOTFOUND 12C device not present.
DRV_ERROR_ACK Unable to communicate with card.
See also SetDDGIOCFrequency GetDDGIOCFrequency SetDDGIOCNumber
GetDDGIOCNumber GetDDGIOCPulses
NOTE: Available on iStar.
SECTION 11

Page 175

ANDOR"

FUNCTIONS

SetDDGIOCFrequency

unsigned int WINAPI SetDDGIOCFrequency(double frequency)

Description

Parameters
Return

See also

This function sets the frequency of the integrate on chip option. It should be called once
the conditions of the experiment have been setup in order for correct operation. The
frequency should be limited to 5000Hz when Intelligate is activated to prevent damage to
the head and 50000Hz otherwise to prevent the gater from overheating. The

recommended order is

Experiment setup (exposure time, readout mode, gate parameters, ...)

SetDDGIOCFrequency (x)
SetDDGIOC(true)
GetDDGIOCPulses(y)

StartAcquisition()

double frequency: frequency of IOC option in Hz.

unsigned int

DRV_SUCCESS Value for frequency accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_I2CTIMEOUT 12C command timed out.
DRV_I2CDEVNOTFOUND 12C device not present.
DRV_ERROR_ACK Unable to communicate with card.

GetDDGIOCFrequency SetDDGIOCNumber GetDDGIOCNumber GetDDGIOCPulses
SetDDGIOC

NOTE: Available on iStar.

SECTION 11
Page 176

ANDOR"
& A FUNCTIONS

SetDDGIOCNumber

unsigned int WINAPI SetDDGIOCNumber(unsigned long numberPulses)
Description This function allows the user to limit the number of pulses used in the integrate on chip
option at a given frequency. It should be called once the conditions of the experiment

have been setup in order for correct operation.

Parameters unsigned long numberPulses: the number of integrate on chip pulses triggered within the
fire pulse.

Return unsigned int
DRV_SUCCESS Value for IOC number accepted
DRV_NOT_INITIALIZED System not initialized
DRV_ACQUIRING Acquisition in progress
DRV_I2CTIMEOUT 12C command timed out
DRV_I2CDEVNOTFOUND 12C device not present
DRV_ERROR_ACK Unable to communicate with card

See also SetDDGIOCFrequency GetDDGIOCFrequency GetDDGIOCNumber GetDDGIOCPulses
SetDDGIOC

NOTE: Available on iStar.

SetDDGTimes
unsigned int WINAPI SetDDGTimes(double t0, double t1, double t2)

Description This function sets the properties of the gate pulse. t0 has a resolution of 16 nanoseconds

whilst t1 and t2 have a resolution of 25 picoseconds.

Parameters double t0: output A delay in nanoseconds.
double t1: gate delay in picoseconds.

double t2: pulse width in picoseconds.

Return unsigned int
DRV_SUCCESS Values for gate pulse accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_I2CTIMEOUT 12C command timed out.
DRV_I2CDEVNOTFOUND I2C device not present.
DRV_ERROR_ACK Unable to communicate with card.
P1_INVALID Invalid output A delay.
P2_INVALID Invalid gate delay.
P3_INVALID Invalid pulse width.

See also SetDDGGateStep

NOTE: Available on iStar.

SECTION 11
Page 177

ANDOR"
o ANDY FUNCTIONS

SetDDGTriggerMode

unsigned int WINAPI SetDDGTriggerMode(int mode)

Description

Parameters

Return

This function will set the trigger mode of the internal delay generator to either Internal or

External

int mode: trigger mode

Valid values:

0 Internal

1 External
unsigned int
DRV_SUCCESS Trigger mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Trigger mode invalid.

NOTE: Available on iStar.

SetDDGVariableGateStep

unsigned int WINAPI SetDDGVariableGateStep(int mode, double p1, double p2)

Description

Parameters

Return

See also

This function will set a varying value for the gate step in a kinetic series. The lowest
available resolution is 25 picoseconds and the maximum permitted value is 25 seconds.

int mode: the gate step mode.

Valid values: 1 Exponential (p1*exp(p2*n))
2 Logarithmic (p1*log(p2*n))
3 Linear (p1 + p2*n)

n=1, 2, ..., number in kinetic series

unsigned int

DRV_SUCCESS Gate step mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Gate step mode invalid.

StartAcquisition

NOTE: Available on iStar.

SECTION 11
Page 178

ANDOR"
& A FUNCTIONS

SetDelayGenerator

unsigned int WINAPI SetDelayGenerator(int board, short address, int typ)

Description This function sets parameters to control the delay generator through the GPIB card in

your computer.

Parameters int board: The GPIB board number of the card used to interface with the Delay
Generator.
short address: The number that allows the GPIB board to identify and send commands to
the delay generator.

Int typ: The type of your Delay Generator.

Return unsigned int
DRV_SUCCESS Delay Generator set up.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID GPIB board invalid.
DRV_P2INVALID GPIB address invalid
DRV_P3INVALID Delay generator type invalid.

See also SetGate

NOTE: Available on ICCD.

SECTION 11
Page 179

ANDOR"

FUNCTIONS

SetDMAParameters

unsigned int WINAPI SetDMAParameters(int MaximagesPerDMA, float SecondsPerDMA)

Description

Parameters

Return

In order to facilitate high image readout rates the controller card may wait for multiple

images to be acquired before notifying the SDK that new data is available. Without this

facility, there is a chance that hardware interrupts may be lost as the operating system

does not have enough time to respond to each interrupt. The drawback to this is that you

will not get the data for an image until all images for that interrupt have been acquired.

There are 3 settings involved in determining how many images will be acquired for each

notification (DMA Interrupt) of the controller card and they are as follows:

1.

The size of the DMA buffer gives an upper limit on the number of images that
can be stored within it and is usually set to the size of one full image when
installing the software. This will usually mean that if you acquire full frames there

will never be more than one image per DMA.

A second setting that is used is the maximum amount of time(SecondsPerDMA)
that should expire between interrupts. This can be used to give an indication of
the reponsiveness of the operating system to interrupts. Decreasing this value
will allow more interrupts per second and should only be done for faster pcs. The
default value is 0.03s (30ms), finding the optimal value for your pc can only be

done through experimentation.

The third setting is an overide to the number of images calculated using the
previous settings. If the number of images per dma is calculated to be greater
than MaxlmagesPerDMA then it will be reduced to MaximagesPerDMA. This can
be used to, for example, ensure that there is never more than 1 image per DMA
by setting MaxiImagesPerDMA to 1. Setting MaxlmagesPerDMA to zero removes
this limit. Care should be taken when modifying these parameters as missed

interrupts may prevent the acquisition from completing.

int MaxlmagesPerDMA: Override to the number of images per DMA if the calculated

value is higher than this. (Default=0, ie. no override)

float SecondsPerDMA: Minimum amount of time to elapse between interrrupts.
(Default=0.03s)

unsigned int

DRV_SUCCESS DMA Parameters setup successfully.
DRV_NOT_INITIALIZED System not initialized.
DRV_P1INVALID MaxImagesPerDMA invalid
DRV_P2INVALID SecondsPerDMA invalid

SECTION 11
Page 180

ANDOR"

FUNCTIONS

SetDriverEvent

unsigned int WINAPI SetDriverEvent(HANDLE driverEvent)

Description

Parameters
Return

See also

This function passes a Win32 Event handle to the SDK via which the the user software

can be informed that something has occurred. For example the SDK can “set” the event
when an acquisition has completed thus relieving the user code of having to continually
pole to check on the status of the acquisition.

The event will be “set” under the follow conditions:

1) Acquisition completed or aborted.

2) As each scan during an acquisition is completed.

3) Temperature as stabilized, drifted from stabilization or could not be reached.

When an event is triggered the user software can then use other SDK functions to

determine what actually happened.

Condition 1 and 2 can be tested via GetStatus function, while condition 3 checked via

GetTemperature function.

You must reset the event after it has been handled in order to receive additional triggers.

Before deleting the event you must call SetEvent with NULL as the parameter.

HANDLE driverEvent: Win32 event handle.

unsigned int

DRV_SUCCESS Event set.

DRV_NOT_INITIALIZED System not initialized.
DRV_NOT_SUPPORTED Function not supported for operating system

GetStatus GetTemperature GetAcquisitionProgress

NOTE: Not all programming environments allow the use of multiple threads and WIN32 events.

SECTION 11
Page 181

ANDOR"

FUNCTIONS

SetDualExposureMode

unsigned int WINAPI SetDualExposureMode(int mode)

Description

Parameters

Return

See also

This function turns on and off the option to acquire 2 frames for each external trigger
pulse. This mode is only available for certain sensors in run till abort mode, external
trigger, full image.

int state: Enables/Disables dual exposure mode
1 — Enable mode

0 — Disable mode

unsigned int

DRV_SUCCESS Parameters set.

DRV_NOT_INITIALIZED System not initialized.

DRV_NOT_SUPPORTED Dual exposure mode not supported on this camera.
DRV_ACQUIRING Acquisition in progress.

DRV_P1INVALID Mode parameter was not zero or one.

GetCapabilities, SetDualExposureTimes, GetDualExposureTimes

SetDualExposureTimes

unsigned int WINAPI SetDualExposureTimes(float exposure1, float exposure2)

Description

Parameters

Return

See also

This function configures the two exposure times used in dual exposure mode. This mode
is only available for certain sensors in run till abort mode, external trigger, full image.

float exposure1: the exposure time in seconds for each odd numbered frame.

float exposure2: the exposure time in seconds for each even numbered frame.

unsigned int

DRV_SUCCESS Parameters set.

DRV_NOT_INITIALIZED System not initialized.

DRV_NOT_SUPPORTED Dual exposure mode not supported on this camera.
DRV_ACQUIRING Acquisition in progress.

DRV_P1INVALID First exposure out of range.

DRV_P2INVALID Second exposure out of range.

GetCapabilities, SetDualExposureMode, GetDualExposureTimes

SECTION 11
Page 182

ANDOR"

FUNCTIONS

SetEMAdvanced

unsigned int WINAPI SetEMAdvanced(int state)

Description

Parameters

Return

See also

This function turns on and off access to higher EM gain levels within the SDK. Typically,
optimal signal to noise ratio and dynamic range is achieved between x1 to x300 EM Gain.
Higher gains of > x300 are recommended for single photon counting only. Before using
higher levels, you should ensure that light levels do not exceed the regime of tens of

photons per pixel, otherwise accelerated ageing of the sensor can occur.

int state: Enables/Disables access to higher EM gain levels
1 — Enable access

0 — Disable access

unsigned int

DRV_SUCCESS Parameters set.

DRV_NOT_INITIALIZED System not initialized.

DRV_NOT_AVAILABLE Advanced EM gain not available for this camera.
DRV_ACQUIRING. Acquisition in progress.

DRV_P1INVALID State parameter was not zero or one.

GetCapabilities, GetEMCCDGain, SetEMCCDGain, SetEMGainMode

SetEMCCDGain

unsigned int WINAPI SetEMCCDGain(int gain)

Description

Parameters
Return

See also

Allows the user to change the gain value. The valid range for the gain depends on what
gain mode the camera is operating in. See SetEMGainMode to set the mode and

GetEMGainRange to get the valid range to work with.

int gain: amount of gain applied.

unsigned int

DRV_SUCCESS Value for gain accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_I2CTIMEOUT I12C command timed out.
DRV_I2CDEVNOTFOUND I12C device not present.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Gain value invalid.

GetEMCCDGain SetEMGainMode GetEMGainRange

NOTE: Only available on EMCCD sensor systems.

SECTION 11
Page 183

ANDOR"
& A FUNCTIONS

SetEMClockCompensation
unsigned int WINAPI SetEMClockCompensation(int EMClockCompensationFlag)

Description THIS FUNCTION IS RESERVED.

SetEMGainMode
unsigned int WINAPI SetEMGainMode(int mode)

Description Set the EM Gain mode to one of the following possible settings.
Mode 0: The EM Gain is controlled by DAC settings in the range 0-255. Default mode.
1: The EM Gain is controlled by DAC settings in the range 0-4095.

2: Linear mode.

3: Real EM gain
Parameters int mode: EM Gain mode.
Return
DRV_SUCCESS Mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID EM Gain mode invalid.

SECTION 11
Page 184

ANDOR"
o ANDY FUNCTIONS

SetExposureTime
unsigned int WINAPI SetExposureTime(float time)

Description This function will set the exposure time to the nearest valid value not less than the given
value. The actual exposure time used is obtained by GetAcquisitionTimings. . Please
refer to SECTION 5 — ACQUISITION MODES for further information.

Parameters float time: the exposure time in seconds.

Return unsigned int
DRV_SUCCESS Exposure time accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Exposure Time invalid.

See also GetAcquisitionTimings

NOTE: For Classics, if the current acquisition mode is Single-Track, Multi-Track or Image then this
function will actually set the Shutter Time. The actual exposure time used is obtained from the

GetAcquisitionTimings function.

SetFanMode
unsigned int WINAPI SetFanMode(int mode)

Description Allows the user to control the mode of the camera fan. If the system is cooled, the fan
should only be turned off for short periods of time. During this time the body of the

camera will warm up which could compromise cooling capabilities.

If the camera body reaches too high a temperature, depends on camera, the buzzer will
sound. If this happens, turn off the external power supply and allow the system to
stabilize before continuing.

Parameters int mode: fan on full (0)

fan on low (1)

fan off (2)

Return unsigned int
DRV_SUCCESS Value for mode accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_I2CTIMEOUT I°C command timed out.
DRV_I2CDEVNOTFOUND I°C device not present.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Mode value invalid.

NOTE: Only available on iDus, iXon & Newton. Luca S fan can only be set to full or off.

SECTION 11
Page 185

ANDOR"
& A FUNCTIONS

SetFastKinetics
unsigned int WINAPI SetFastKinetics(int exposedRows int seriesLength, float time, int mode, int
hbin, int vbin)

Description This function will set the parameters to be used when taking a fast kinetics acquisition.

Parameters int exposedRows: sub-area height in rows.
int seriesLength: number in series.
float time: exposure time in seconds.
int mode: binning mode (0 — FVB , 4 — Image).
int hbin: horizontal binning.

int vbin: vertical binning (only used when in image mode).

Return unsigned int
DRV_SUCCESS All parameters accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid height.
DRV_P2INVALID Invalid number in series.
DRV_P3INVALID Exposure time must be greater than 0.
DRV_P4INVALID Mode must be equal to 0 or 4.
DRV_PSINVALID Horizontal binning.
DRV_PGINVALID Vertical binning.

See also SetFKVShiftSpeed SetFastKineticsEx

NOTE: For classic cameras the vertical and horizontal binning must be 1
For iDus, it is recommended that you set horizontal binning to 1

SECTION 11
Page 186

ANDOR"
o ANDY FUNCTIONS

SetFastKineticsEx
unsigned int WINAPI SetFastKineticsEx(int exposedRows, int seriesLength, float time, int mode, int
hbin, int vbin, int offset)

Description This function is the same as SetFastKinetics with the addition of an Offset parameter,

which will inform the SDK of the first row to be used.

Parameters int exposedRows: sub-area height in rows.
int seriesLength: number in series.
float time: exposure time in seconds.
int mode: binning mode (0 — FVB , 4 — Image).
int hbin: horizontal binning.
int vbin: vertical binning (only used when in image mode).

Int offset: offset of first row to be used in Fast Kinetics from the bottom of the CCD.

Return unsigned int
DRV_SUCCESS All parameters accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid height.
DRV_P2INVALID Invalid number in series.
DRV_P3INVALID Exposure time must be greater than 0.
DRV_P4INVALID Mode must be equal to 0 or 4.
DRV_PSINVALID Horizontal binning.
DRV_P6INVALID Vertical binning.
DRV_P7INVALID Offset not within CCD limits

See also SetFKVShiftSpeed SetFastKinetics

NOTE: For classic cameras the offset must be 0 and the vertical and horizontal binning must be 1
For iDus, it is recommended that you set horizontal binning to 1

SECTION 11
Page 187

ANDOR"
& A FUNCTIONS

SetFastExtTrigger

unsigned int WINAPI SetFastExtTrigger(int mode)

Description

Parameters

Return

See also

This function will enable fast external triggering. When fast external triggering is enabled
the system will NOT wait until a “Keep Clean” cycle has been completed before
accepting the next trigger. This setting will only have an effect if the trigger mode has
been set to External via SetTriggerMode.

int mode:
0 Disabled
1 Enabled
unsigned int
DRV_SUCCESS Parameters accepted.
SetTriggerMode

SetFilterMode

unsigned int WINAPI SetFilterMode(int mode)

Description

Parameters

Return

See also

This function will set the state of the cosmic ray filter mode for future acquisitions. If the
filter mode is on, consecutive scans in an accumulation will be compared and any cosmic
ray-like features that are only present in one scan will be replaced with a scaled version

of the corresponding pixel value in the correct scan.

int mode: current state of filter

0 OFF

2 ON
unsigned int
DRV_SUCCESS Filter mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Mode is out off range.

GetFilterMode

SetFilterParameters

unsigned int WINAPI SetFilterParameters (int width, float sensitivity, int range, float accept, int

smooth, int noise)

Description

THIS FUNCTION IS RESERVED.

SECTION 11
Page 188

ANDOR"
& A FUNCTIONS

SetFKVShiftSpeed
unsigned int WINAPI SetFKVShiftSpeed(int index)
Description This function will set the fast kinetics vertical shift speed to one of the possible speeds of
the system. It will be used for subsequent acquisitions.
Parameters int index: the speed to be used
Valid values 0 to GetNumberFKVShiftSpeeds-1
Return unsigned int
DRV_SUCCESS Fast kinetics vertical shift speed set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Index is out off range.
See also GetNumberFKVShiftSpeeds, GetFKVShiftSpeedF
NOTE: Only available if camera is Classic or iStar.
SetFPDP
unsigned int WINAPI SetFPDP(int state)
Description THIS FUNCTION IS RESERVED.
SetFrameTransferMode
unsigned int WINAPI SetFrameTransferMode (int mode)
Description This function will set whether an acquisition will readout in Frame Transfer Mode. If the
acquisition mode is Single Scan or Fast Kinetics this call will have no affect.
Parameters int mode: mode
0 OFF
1 ON
Return unsigned int
DRV_SUCCESS Frame transfer mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid parameter.
See also SetAcquisitionMode

NOTE: Only available if CCD is a Frame Transfer chip.

SECTION 11
Page 189

ANDOR"

FUNCTIONS

SetFulllmage

unsigned int WINAPI SetFulllmage(int hbin, int vbin)

Description

Parameters

Return

See also

Deprecated see Note:

This function will set the horizontal and vertical binning to be used when taking a full

resolution image.

int hbin: number of pixels to bin horizontally

int vbin: number of pixels to bin vertically

unsigned int

DRV_SUCCESS Binning parameters accepted
DRV_NOT_INITIALIZED System not initialized
DRV_ACQUIRING Acquisition in progress
DRV_P1INVALID Horizontal binning parameter invalid
DRV_P2INVALID Vertical binning parameter invalid
SetReadMode

NOTE: Deprecated by Setimage

SetFVBHBIn

unsigned int WINAPI SetFVBHBIn(int bin)

Description

Parameters
Return

See also

This function sets the horizontal binning used when acquiring in Full Vertical Binned read

mode.

Int bin: Binning size.

unsigned int

DRV_SUCCESS Binning set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid binning size.
SetReadMode

NOTE: 1) If the detector width is not a multiple of the binning DRV_BINNING_ERROR will be
returned from PrepareAcquisition and/or StartAcquisition
2) For iDus, it is recommended that you set horizontal binning to 1

SECTION 11
Page 190

ANDOR"
& A FUNCTIONS

SetGain
unsigned int WINAPI SetGain(int gain)
Description Deprecated for SetMCPGain.

SetGate
unsigned int WINAPI SetGate(float delay, float width, float step_Renamed)
Description This function sets the Gater parameters for an ICCD system. The image intensifier of the

Andor ICCD acts as a shutter on nanosecond time-scales using a process known as
gating.

Parameters float delay: Sets the delay(>=0) between the TO and C outputs on the SRS box to delay
nanoseconds.
float width: Sets the width(>=0) of the gate in nanoseconds
float step_Renamed: Sets the amount(<>0, in nanoseconds) by which the gate position

is moved in time after each scan in a kinetic series.

Return unsigned int
DRV_SUCCESS Gater parameters set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ERROR_ACK Unable to communicate with card.
DRV_ACQUIRING Acquisition in progress.
DRV_GPIBERROR Error communicating with GPIB card.
DRV_P1INVALID Invalid delay
DRV_P2INVALID Invalid width.
DRV_P3INVALID Invalid step.

See also SetDelayGenerator

NOTE: Available on ICCD.

SECTION 11
Page 191

ANDOR"
-

FUNCTIONS
SetGateMode
unsigned int WINAPI SetGateMode(int gatemode)
Description Allows the user to control the photocathode gating mode.
Parameters int gatemode: the gate mode.
Valid values: 0 Fire ANDed with the Gate input.
1 Gating controlled from Fire pulse only.
2 Gating controlled from SMB Gate input only.
3 Gating ON continuously.
4 Gating OFF continuously.
5 Gate using DDG (iStar only).
Return unsigned int
DRV_SUCCESS Gating mode accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_I2CTIMEOUT I°C command timed out.
DRV_I2CDEVNOTFOUND I°C device not present.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Gating mode invalid.
See also SetMCPGain, SetMCPGating
NOTE: Available on iStar.
SECTION 11

Page 192

ANDOR"

FUNCTIONS

SetHighCapacity

unsigned int WINAPI SetHighCapacity(int state)

Description

Parameters

Return

See also

This function switches between high sensitivity and high capacity functionality. With high
capacity enabled the output amplifier is switched to a mode of operation which reduces
the responsivity thus allowing the reading of larger charge packets during binning

operations.

int state: Enables/Disables High Capacity functionality
1 — Enable High Capacity
0 — Disable High Sensitivity

unsigned int

DRV_SUCCESS Parameters set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID State parameter was not zero or one.

GetCapabilities

SetHorizontalSpeed

unsigned int WINAPI SetHorizontalSpeed(int index)

Description

Parameters

Return

See also

Deprecated see Note:

This function will set the horizontal speed to one of the possible speeds of the system. It

will be used for subsequent acquisitions.

int index: the horizontal speed to be used
Valid values 0 to GetNumberHorizontalSpeeds-1

unsigned int

DRV_SUCCESS Horizontal speed set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Index is out off range.

GetNumberHorizontalSpeeds, GetHorizontalSpeed

NOTE: Deprecated by SetHSSpeed

SECTION 11
Page 193

ANDOR"
& A FUNCTIONS

SetHSSpeed
unsigned int WINAPI SetHSSpeed(int typ, int index)

Description This function will set the speed at which the pixels are shifted into the output node during
the readout phase of an acquisition. Typically your camera will be capable of operating at
several horizontal shift speeds. To get the actual speed that an index corresponds to use
the GetHSSpeed function.

Parameters int typ: output amplification.
Valid values: 0 electron multiplication.
1 conventional.

int index: the horizontal speed to be used
Valid values 0 to GetNumberHSSpeeds()-1

Return unsigned int
DRV_SUCCESS Horizontal speed set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Mode is invalid.
DRV_P2INVALID Index is out off range.
See also GetNumberHSSpeeds, GetHSSpeed GetNumberAmp

SECTION 11
Page 194

ANDOR"
& A FUNCTIONS

Setimage
unsigned int WINAPI Setimage(int hbin, int vbin, int hstart, int hend, int vstart, int vend)
Description This function will set the horizontal and vertical binning to be used when taking a full
resolution image.
Parameters int hbin: number of pixels to bin horizontally.
int vbin: number of pixels to bin vertically.
int hstart: Start column (inclusive).
int hend: End column (inclusive).
int vstart: Start row (inclusive).
int vend: End row (inclusive).
Return unsigned int
DRV_SUCCESS All parameters accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Binning parameters invalid.
DRV_P2INVALID Binning parameters invalid.
DRV_P3INVALID Sub-area co-ordinate is invalid.
DRV_P4INVALID Sub-area co-ordinate is invalid.
DRV_P5INVALID Sub-area co-ordinate is invalid.
DRV_PG6INVALID Sub-area co-ordinate is invalid.
See also SetReadMode
NOTE: For iDus, it is recommended that you set horizontal binning to 1
SECTION 11

Page 195

ANDOR"
o ANDY FUNCTIONS

SetimageFlip
unsigned int WINAPI SetimageFlip(int iHFlip, int iVFlip)

Description This function will cause data output from the SDK to be flipped on one or both axes. This
flip is not done in the camera, it occurs after the data is retrieved and will increase
processing overhead. If flipping could be implemented by the user more efficiently then
use of this function is not recomended. E.g writing to file or displaying on screen.

Parameters int iHFlip: Sets horizontal flipping.
int iVFlip: Sets vertical flipping..

1 - Enables Flipping
0 - Disables Flipping

If this function is used in conjunction with the SetimageRotate function the rotation will
occur before the flip regardless of which order the functions are called.

Return unsigned int

DRV_SUCCESS All parameters accepted.

DRV_NOT_INITIALIZED System not initialized.

DRV_P1INVALID HFlip parameter invalid.

DRV_P2INVALID VFlip parameter invalid
See also SetlmageRotate

SECTION 11
Page 196

ANDOR"
o ANDY FUNCTIONS

SetimageRotate

unsigned int WINAPI SetimageRotate(int iRotate)

Description

Parameters

Return

See also

This function will cause data output from the SDK to be rotated on one or both axes. This
rotate is not done in the camera, it occurs after the data is retrieved and will increase
processing overhead. If the rotation could be implemented by the user more efficiently

then use of this function is not recomended. E.g writing to file or displaying on screen.
int iRotate: Rotation setting

0 - No rotation
1 - Rotate 90 degrees clockwise
2 - Rotate 90 degrees anti-clockwise

If this function is used in conjunction with the SetimageFlip function the rotation will occur
before the flip regardless of which order the functions are called.

180 degree rotation can be achieved using the SetimageFlip function by selecting both
horizontal and vertical flipping.

unsigned int

DRV_SUCCESS All parameters accepted.
DRV_NOT _INITIALIZED System not initialized.
DRV_P1INVALID Rotate parameter invalid.
SetlmageFlip

SECTION 11
Page 197

ANDOR"

FUNCTIONS

SetlsolatedCropMode

unsigned int WINAPI SetlsolatedCropMode(int active, int cropheight, int cropwidth, int vbin, int hbin)

Description

Parameters

Return

See also

This function effectively reduces the dimensions of the CCD by excluding some rows or
columns to achieve higher throughput. In isolated crop mode iXon, Newton and iKon
cameras can operate in either Full Vertical Binning or Imaging read modes. iDus can

operate in Full Vertical Binning read mode only.

Note: It is important to ensure that no light falls on the excluded region otherwise

the acquired data will be corrupted.
int active: 1 — Crop mode is ON.
0 — Crop mode is OFF.

int cropheight: The selected crop height. This value must be between 1 and the CCD
height.

int cropwidth: The selected crop width. This value must be between 1 and the CCD
width.

int vbin: The selected vertical binning.

int hbin: The selected horizontal binning.

unsigned int

DRV_SUCCESS Parameters set

DRV_NOT_INITIALIZED System not initialized

DRV_ACQUIRING Acquisition in progress

DRV_P1INVALID active parameter was not zero or one

DRV_P2INVALID Invalid crop height

DRV_P3INVALID Invalid crop width

DRV_P4INVALID Invalid vertical binning

DRV_P5INVALID Invalid horizontal binning

DRV_NOT_SUPPORTED Either the camera does not support isolated Crop mode

or the read mode is invalid

GetDetector SetReadMode

NOTE: For iDus, it is recommended that you set horizontal binning to 1

SECTION 11
Page 198

ANDOR"
o ANDY FUNCTIONS

SetKineticCycleTime
unsigned int WINAPI SetKineticCycleTime(float time)

Description This function will set the kinetic cycle time to the nearest valid value not less than the
given value. The actual time used is obtained by GetAcquisitionTimings. . Please refer to
SECTION 5 — ACQUISITION MODES for further information.

Parameters float time: the kinetic cycle time in seconds.

Return unsigned int
DRV_SUCCESS Cycle time accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Time invalid.

See also SetNumberKinetics

SetMCPGain
unsigned int WINAPI SetMCPGain(int gain)

Description Allows the user to control the voltage across the microchannel plate. Increasing the gain
increases the voltage and so amplifies the signal. The gain range can be returned using
GetMCPGainRange.

Parameters int gain: amount of gain applied.

Return unsigned int
DRV_SUCCESS Value for gain accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_I2CTIMEOUT 12C command timed out.
DRV_I2CDEVNOTFOUND 12C device not present.
DRV_ERROR_ACK Unable to communicate with device.
DRV_P1INVALID Gain value invalid.

See also GetMCPGainRange, SetGateMode, SetMCPGating

NOTE: Available on iStar.

SECTION 11
Page 199

ANDOR"

FUNCTIONS
SetMCPGating
unsigned int WINAPI SetMCPGating(int gating)
Description This function controls the MCP gating.
Parameters int gating: ON/OFF switch for the MCP gating.
Valid values: 0 to switch MCP gating OFF.
1 to switch MCP gating ON.
Return unsigned int
DRV_SUCCESS Value for gating accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_I2CTIMEOUT I°C command timed out.
DRV_I2CDEVNOTFOUND I°C device not present.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Value for gating invalid.
See also SetMCPGain, SetGateMode

NOTE: Available on some ICCD models.

SetMessageWindow

unsigned int WINAPI SetMessageWindow (HWND wnd)

Description

This function is reserved.

unsigned int WINAPI SetMetaData(int state)

Description
Parameters

Return

See also

SetMetaData
This function activates the meta data option.
int state: ON/OFF switch for the meta data option.
Valid values: 0 to switch meta data OFF.
1 to switch meta data ON.
unsigned int
DRV_SUCCESS Meta data option accepted.
DRV_NOT _INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid state.
DRV_NOT_AVAILABLE Feature not available.
GetMetaDatalnfo
SECTION 11

Page 200

ANDOR"
& A FUNCTIONS

SetMultiTrack

unsigned int WINAPI SetMultiTrack(int number, int height, int offset, int* bottom, int *gap)

Description

Parameters

Return

See also

This function will set the multi-Track parameters. The tracks are automatically spread
evenly over the detector. Validation of the parameters is carried out in the following
order:

e Number of tracks,

e Track height

o Offset.
The first pixels row of the first track is returned via ‘bottom’.
The number of rows between each track is returned via ‘gap’.

int number: number tracks

Valid values 1 to number of vertical pixels
int height: height of each track

Valid values >0 (maximum depends on number of tracks)
int offset: vertical displacement of tracks

Valid values depend on number of tracks and track height
int* bottom: first pixels row of the first track

int* gap: number of rows between each track (could be 0)

unsigned int

DRV_SUCCESS Parameters set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Number of tracks invalid.
DRV_P2INVALID Track height invalid.
DRV_P3INVALID Offset invalid.

SetReadMode, StartAcquisition SetRandomTracks

SECTION 11
Page 201

ANDOR"
o ANDY FUNCTIONS

SetMultiTrackHBin
unsigned int WINAPI SetMultiTrackHBin(int bin)

Description This function sets the horizontal binning used when acquiring in Multi-Track read mode.
Parameters int bin: Binning size.
Return unsigned int
DRV_SUCCESS Binning set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid binning size.
See also SetReadMode SetMultiTrack

NOTE: 1) If the multitrack range is not a multiple of the binning DRV_BINNING_ERROR will be
returned from PrepareAcquisition and/or StartAcquisition
2) For iDus, it is recommended that you set horizontal binning to 1

SetMultiTrackHRange
unsigned int WINAPI SetMultiTrackHRange (int iStart, int iEnd)

Description This function sets the horizontal range used when acquiring in Multi Track read mode.

Parameters int iStart: First horizontal pixel in multi track mode.
int iEnd: Last horizontal pixel in multi track mode.

Return unsigned int
DRV_SUCCESS Range set.
DRV_NOT_INITIALIZED System not initialized.
DRV_NOT_AVAILABLE Feature not available for this camera.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid start position.
DRV_P2INVALID Invalid end position.

See also SetReadMode SetMultiTrack

SECTION 11
Page 202

ANDOR"
o ANDY FUNCTIONS

SetNextAddress
unsigned int WINAPI SetNextAddress(at_32* data, long lowAdd, long highAdd, long len, long
physical)

Description THIS FUNCTION IS RESERVED.

SetNextAddress16
unsigned int WINAPI SetNextAddress16(at_32* data, long lowAdd, long highAdd, long len, long
physical)

Description THIS FUNCTION IS RESERVED.

SetNumberAccumulations
unsigned int WINAPI SetNumberAccumulations(int number)

Description This function will set the number of scans accumulated in memory. This will only take
effect if the acquisition mode is either Accumulate or Kinetic Series.

Parameters int number: number of scans to accumulate

Return unsigned int
DRV_SUCCESS Accumulations set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Number of accumulates.

See also GetAcquisitionTimings, SetAccumulationCycleTime, SetAcquisitionMode,

SetExposureTime, SetKineticCycleTime, SetNumberKinetics

SetNumberKinetics
unsigned int WINAPI SetNumberKinetics(int number)

Description This function will set the number of scans (possibly accumulated scans) to be taken
during a single acquisition sequence. This will only take effect if the acquisition mode is
Kinetic Series.

Parameters int number: number of scans to store

Return unsigned int
DRV_SUCCESS Series length set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Number in series invalid.

See also GetAcquisitionTimings, SetAccumulationCycleTime, SetAcquisitionMode,

SetExposureTime, SetKineticCycleTime

SECTION 11
Page 203

ANDOR"
& A FUNCTIONS

SetNumberPrescans

unsigned int WINAPI SetNumberPrescans(int iNumber)

Description

Parameters
Return

See also

This function will set the number of scans acquired before data is to be retrieved. This
will only take effect if the acquisition mode is Kinetic Series.

int iNumber: number of scans to ignore

unsigned int

DRV_SUCCESS Prescans set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Number of prescans invalid.

GetAcquisitionTimings, SetAcquisitionMode, SetKineticCycleTime, SetNumberKinetics

SetOutputAmplifier

unsigned int WINAPI SetOutputAmplifier(int typ)

Description

Parameters

Return

Some EMCCD systems have the capability to use a second output amplifier. This
function will set the type of output amplifier to be used when reading data from the head
for these systems.

int typ: the type of output amplifier.
0 — Standard EMCCD gain register (default).

1 — Conventional CCD register.

unsigned int

DRV_SUCCESS Series length set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Output amplifier type invalid.

NOTE: Available in iXon & Newton.

SECTION 11
Page 204

ANDOR"
& A FUNCTIONS

SetOverlapMode
unsigned int WINAPI SetOverlapMode (int mode)
Description This function will set whether an acquisition will readout in Overlap Mode. If the

acquisition mode is Single Scan or Fast Kinetics this call will have no affect.
Parameters int mode: mode

0 OFF
1 ON
Return unsigned int
DRV_SUCCESS Overlap mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid parameter.
See also SetAcquisitionMode

NOTE: Only available if CCD is an Overlap sensor.

SECTION 11
Page 205

ANDOR"
o ANDY FUNCTIONS

SetPCiMode

unsigned int WINAPI SetPCIMode(int mode, int value)
Description With the CCI23 card, events can be sent when the camera is starting to expose and when

it has finished exposing. This function will control whether those events happen or not.

Parameters int mode: currently must be set to 1
int value: 0 to disable the events, 1 to enable

Return unsigned int
DRV_SUCCESS Acquisition mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Acquisition Mode invalid
See also SetAcqStatusEvent SetCameraStatusEnable
NOTE This is only supported by the CCI23 card. The software must register its event via

the SetAcqgStatusEvent. To specify which event the software is interested in use
the SetCameraStatusEnable.

SECTION 11
Page 206

ANDOR"

FUNCTIONS

SetPhotonCounting

unsigned int WINAPI SetPhotonCounting(int state)

Description
Parameters

Return

See also

This function activates the photon counting option.
int state: ON/OFF switch for the photon counting option.

Valid values: 0 to switch photon counting OFF.

1 to switch photon counting ON.
unsigned int
DRV_SUCCESS photon counting option accepted.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.

SetPhotonCountingThreshold

SetPhotonCountingThreshold

unsigned int WINAPI SetPhotonCountingThreshold(long min, long max)

Description
Parameters

Return

See also

This function sets the minimum and maximum threshold for the photon counting option.
long min: minimum threshold in counts for photon counting.

long max: maximum threshold in counts for photon counting

unsigned int

DRV_SUCCESS Thresholds accepted.

DRV_P1INVALID Minimum threshold outside valid range (1-65535)
DRV_P2INVALID Maximum threshold outside valid range
DRV_NOT_INITIALIZED System not initialized.

DRV_ACQUIRING Acquisition in progress.

DRV_ERROR_ACK Unable to communicate with card.
SetPhotonCounting

SetPixelMode

unsigned int WINAPI SetPixelMode (int bitdepth, int colormode)

Description

THIS FUNCTION IS RESERVED.

SECTION 11
Page 207

ANDOR"
* AN FUNCTIONS

SetPreAmpGain
unsigned int WINAPI SetPreAmpGain(int index)

Description This function will set the pre amp gain to be used for subsequent acquisitions. The actual
gain factor that will be applied can be found through a call to the GetPreAmpGain

function.

The number of Pre Amp Gains available is found by calling the GetNumberPreAmpGains

function.

Parameters int index: index pre amp gain table

Valid values 0 to GetNumberPreAmpGains-1

Return unsigned int
DRV_SUCCESS Pre amp gain set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Index out of range.

See also IsPreAmpGainAvailable, GetNumberPreAmpGains, GetPreAmpGain

NOTE: Available on iDus, iXon & Newton.

SECTION 11
Page 208

ANDOR"

FUNCTIONS

SetRandomTracks

unsigned int WINAPI SetRandomTracks(int numTracks, int* areas)

Description

Parameters

Return

See also

This function will set the Random-Track parameters. The positions of the tracks are
validated to ensure that the tracks are in increasing order and do not overlap. The

horizontal binning is set via the SetCustomTrackHBin function. The vertical binning is set

to the height of each track.

Some cameras need to have at least 1 row in between specified tracks. Ixon+ and the
USB cameras allow tracks with no gaps in between.

Example:

Tracks specified as 20 30 31 40 tells the SDK that the first track starts at row 20 in the
CCD and finishes at row 30. The next track starts at row 31 (no gap between tracks) and

ends at row 40.

int numTracks: number tracks
Valid values 1 to number of vertical pixels/2
int* areas: pointer to an array of track positions. The array has the form

bottom1, top1, bottom2, top2 bottomN, topN

unsigned int

DRV_SUCCESS Parameters set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Number of tracks invalid.
DRV_P2INVALID Track positions invalid.

DRV_RANDOM_TRACK_ERROR Invalid combination of tracks, out of memory or

mode not available.

SetCustomTrackHBin, SetReadMode, StartAcquisition, SetComplexImage

SECTION 11
Page 209

ANDOR"

FUNCTIONS

SetReadMode

unsigned int WINAPI SetReadMode(int mode)

Description This function will set the readout mode to be used on the subsequent acquisitions.

Parameters int mode: readout mode

Valid values: 0
1

2
3
4

Return unsigned int
DRV_SUCCESS

Full Vertical Binning
Multi-Track
Random-Track
Single-Track

Image

Readout mode set.

DRV_NOT_INITIALIZED System not initialized.

DRV_ACQUIRING
DRV_P1INVALID

Acquisition in progress.

Invalid readout mode passed.

See also GetAcquisitionTimings, SetAccumulationCycleTime, SetAcquisitionMode,

SetExposureTime, SetKineticCycleTime, SetNumberAccumulations, SetNumberKinetics

SetRegisterDump

unsigned int WINAPI SetRegisterDump(int mode)

Description THIS FUNCTION IS RESERVED.

SECTION 11
Page 210

ANDOR"
& A FUNCTIONS

SetRingExposureTimes

unsigned int WINAPI SetRingExposureTimes(int numTimes, float* times)

Description This function will send up an array of exposure times to the camera if the hardware
supports the feature. See GetCapabilities. Each acquisition will then use the next
exposure in the ring looping round to the start again when the end is reached. There can

be a maximum of 16 exposures.

Parameters int numTimes: The number of exosures

float * times: A predeclared pointer to an array of numTimes floats

Return Unsigned int
DRV_SUCCESS Success
DRV_NOT_INITIALIZED System not initialized
DRV_INVALID_MODE This mode is not available.
DRV_P1INVALID Must be between 1 and 16 exposures inclusive
DRV_P2INVALID The exposures times are invalid.
DRV_NOTAVAILABLE System does not support this option

See also GetCapabilities, GetNumberRingExposureTimes, GetAdjustedRingExposureTimes,

GetRingExposureRange IsTriggerModeAvailable

SECTION 11
Page 211

ANDOR"
*AT0Y FUNCTIONS

SetSaturationEvent

unsigned int WINAPI SetSaturationEvent(HANDLE saturationEvent)

Description

Parameters

Return

See also

NOTE

This is only supported with the CCI-23 PCI card. USB cameras do not have this feature.

This function passes a Win32 Event handle to the driver via which the driver can inform
the main software that an acquisition has saturated the sensor to a potentially damaging
level. You must reset the event after it has been handled in order to receive additional

triggers. Before deleting the event you must call SetEvent with NULL as the parameter.

HANDLE saturationEvent: Win32 event handle.

unsigned int

DRV_SUCCESS Acquisition mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_NOT_SUPPORTED Function not supported for operating system
SetDriverEvent

The programmer must reset the event after it has been handled in order to receive
additional triggers, unless the event has been created with auto-reset, e.g. event =
CreateEvent(NULL, FALSE, FALSE, NULL). Also, NOT all programming

environments allow the use of multiple threads and Win32 events.
Only supported with the CCI-23 card.

USB cameras do not have this feature.

SECTION 11
Page 212

ANDOR"
& A FUNCTIONS

SetShutter
unsigned int WINAPI SetShutter(int typ, int mode, int closingtime, int openingtime)

Description This function controls the behaviour of the shutter.

The typ parameter allows the user to control the TTL signal output to an external shutter.
The mode parameter configures whether the shutter opens & closes automatically

(controlled by the camera) or is permanently open or permanently closed.

The opening and closing time specify the time required to open and close the shutter
(this information is required for calculating acquisition timings — see SHUTTER
TRANSFER TIME).

Parameters int typ:
0 Output TTL low signal to open shutter
1 Output TTL high signal to open shutter
int mode:
0 Auto
1 Open
2 Close

int closingtime: Time shutter takes to close (milliseconds)

int openingtime: Time shutter takes to open (milliseconds)

Return unsigned int
DRV_SUCCESS Shutter set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid TTL type.
DRV_P2INVALID Invalid mode.
DRV_P3INVALID Invalid time to open.
DRV_P4INVALID Invalid time to close.

NOTE

1. The opening and closing time can be different.

2. For cameras capable of controlling the internal and external shutter independently
(capability AC_FEATURES_SHUTTEREX) you MUST use SetShutterEx.

3. Cameras with an internal shutter (use function IsinternalMechanicalShutter to test) but no
independent shutter control (capability AC_FEATURES_SHUTTEREX) will always output a
“HIGH to open” TTL signal through the external shutter port.

SECTION 11
Page 213

ANDOR"
& A FUNCTIONS

SetShutterEx

unsigned int WINAPI SetShutterEx(int typ, int mode, int closingtime, int openingtime, int extmode)

Description

Parameters

Return

NOTE

This function expands the control offered by SetShutter to allow an external shutter and
internal shutter to be controlled independently (only available on some cameras — please
consult your Camera User Guide). The typ parameter allows the user to control the TTL
signal output to an external shutter. The opening and closing times specify the length of
time required to open and close the shutter (this information is required for calculating
acquisition timings — see SHUTTER TRANSFER TIME).

The mode and extmode parameters control the behaviour of the internal and external
shutters. To have an external shutter open and close automatically in an experiment, set
the mode parameter to “Open” and set the extmode parameter to “Auto”. To have an
internal shutter open and close automatically in an experiment, set the extmode

parameter to “Open” and set the mode parameter to “Auto”.

To not use any shutter in the experiment, set both shutter modes to permanently open.

Int typ:
0 Output TTL low signal to open shutter
1 Output TTL high signal to open shutter
int mode:
0 Auto
1 Open
2 Close

int closingtime: time shutter takes to close (milliseconds)
int openingtime: Time shutter takes to open (milliseconds)

int mode:

0 Auto

1 Open

2 Close
Unsigned int
DRV_SUCCESS Shutter set.
DRV_NOT_INITIALIZED System not initialized
DRV_ACQUIRING Acquisition in progress
DRV_ERROR_ACK Unable to communicate with card.
DRV_P1INVALID Invalid TTL type.
DRV_P2INVALID Invalid internal mode
DRV_P3INVALID Invalid time to open.
DRV_P4INVALID Invalid time to close
DRV_P5INVALID Invalid external mode

1. The opening and closing time can be different.

2. For cameras capable of controlling the internal and external shutter independently
(capability AC_FEATURES_SHUTTEREX) you MUST use SetShutterEx.

3. For cameras with an internal shutter (use function IsinternalMechanicalShutter to test) but

SECTION 11
Page 214

ANDOR"
o ANDY FUNCTIONS

no independent shutter control (capability AC_FEATURES_SHUTTEREX), the external
shutter will always behave like the internal shutter and the externalMode parameter is
meaningless.

SetShutters
unsigned int WINAPI SetShutters(int typ, int mode, int closingtime, int openingtime, int exttype, int

extmode, int dummy1, int dummy2)

Description THIS FUNCTION IS RESERVED.

SetSifComment

unsigned int WINAPI SetSifComment(char* comment)

Description This function will set the user text that will be added to any sif files created with the

SaveAsSif function. The stored comment can be cleared by passing NULL or an empty

text string.
Parameters char* comment: The comment to add to new sif files.
Return unsigned int

DRV_SUCCESS Sif comment set.
See also SaveAsSif SaveAsCommentedSif

NOTE: To add a comment to a SIF file that will not be used in any future SIF files that are saved, use
the function SaveAsCommentedSif.

SetSingleTrack
unsigned int WINAPI SetSingleTrack(int centre, int height)

Description This function will set the single track parameters. The parameters are validated in the
following order: centre row and then track height.

Parameters int centre: centre row of track
Valid range 0 to number of vertical pixels.
int height: height of track

Valid range > 1 (maximum value depends on centre row and number of vertical pixels).

Return unsigned int
DRV_SUCCESS Parameters set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Center row invalid.
DRV_P2INVALID Track height invalid.
See also SetReadMode

SECTION 11
Page 215

ANDOR"
& A FUNCTIONS

SetSingleTrackHBin
unsigned int WINAPI SetSingleTrackHBin(int bin)

Description This function sets the horizontal binning used when acquiring in Single Track read mode.
Parameters Int bin: Binning size.
Return unsigned int
DRV_SUCCESS Binning set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid binning size.
See also SetReadMode

NOTE: 1) If the detector width is not a multiple of the binning DRV_BINNING_ERROR will be
returned from PrepareAcquisition and/or StartAcquisition
2) For iDus, it is recommended that you set horizontal binning to 1

SECTION 11
Page 216

ANDOR"
& A FUNCTIONS

SetSpool

unsigned int WINAPI SetSpool(int active, int method, char* path, int framebuffersize)

Description

Parameters

This function will enable and disable the spooling of acquired data to the hard disk or to
the RAM.

With spooling method 0, each scan in the series will be saved to a separate file
composed of a sequence of 32-bit integers.

With spooling method 1 the type of data in the output files depends on what type of
acquisition is taking place (see below).

Spooling method 2 writes out the data to file as 16-bit integers.

Spooling method 3 creates a directory structure for storing images where multiple images
may appear in each file within the directory structure and the files may be spread across
multiple directories. Like method 1 the data type of the image pixels depends on whether
accumulate mode is being used.

Method 4 Creates a RAM disk for storing images so you should ensure that there is
enough free RAM to store the full acquisition.

Methods 5, 6 and 7 can be used to directly spool out to a particular file type, either FITS,
SIF or TIFF respectively. In the case of FITS and TIFF the data will be written out as 16-
bit values.

Method 8 is similar to method 3, however the data is first compressed before writing to
disk. In some circumstances this may improve the maximum rate of writing images to
disk, however as the compression can be very CPU intensive this option may not be
suitable on slower processors.

The data is stored in row order starting with the row nearest the readout register. With
the exception of methods 5, 6 and 7, the data acquired during a spooled acquisition can
be retrieved through the normal functions. This is a change to previous versions; it is no
longer necessary to load the data from disk from your own application.

int active: Enable/disable spooling

Valid values:
0 Disable spooling.
1 Enable spooling.
int method: Indicates the format of the files written to disk
Valid values:
0. Files contain sequence of 32-bit integers
1 Format of data in files depends on whether multiple accumulations are
being taken for each scan. Format will be 32-bit integer if data is being
accumulated each scan; otherwise the format will be 16-bit integer.
2. Files contain sequence of 16-bit integers.
3. Multiple directory structure with multiple images per file and multiple files
per directory.
4, Spool to RAM disk.
5. Spool to 16-bit Fits File.
6. Spool to Andor Sif format.
7. Spool to 16-bit Tiff File.
8. Similar to method 3 but with data compression.

char* path: String containing the filename stem. May also contain the path to the
directory into which the files are to be stored.

int framebuffersize: This sets the size of an internal circular buffer used as temporary
storage. The value is the total number images the buffer can hold, not the
size in bytes. Typical value would be 10. This value would be increased in

situations where the computer is not able to spool the data to disk at the

SECTION 11
Page 217

TECHNOLOGY

ANDOR"
-

FUNCTIONS

required rate.

Return unsigned int
DRV_SUCCESS

DRV_NOT_INITIALIZED
DRV_ACQUIRING

Parameters set.
System not initialized.

Acquisition in progress.

See also GetSpoolProgress

SetStorageMode
unsigned int WINAPI SetStorageMode(long mode)
Description THIS FUNCTION IS RESERVED.

SetTemperature
unsigned int WINAPI SetTemperature(int temperature)
Description This function will set the desired temperature of the detector. To turn the cooling ON and

OFF use the CoolerON and CoolerOFF function respectively.

Parameters int temperature: the temperature in Centigrade.

Valid range is given by GetTemperatureRange

Return unsigned int
DRV_SUCCESS
DRV_NOT_INITIALIZED
DRV_ACQUIRING
DRV_ERROR_ACK
DRV_P1INVALID
DRV_NOT_SUPPORTED

Temperature set.

System not initialized.

Acquisition in progress.

Unable to communicate with card.

Temperature invalid.

The camera does not support setting the temperature.

See also CoolerOFF, CoolerON, GetTemperature, GetTemperatureF, GetTemperatureRange

NOTE: Not available on Luca R cameras — automatically cooled to -20.

SECTION 11
Page 218

ANDOR"
& A FUNCTIONS

SetTriggerinvert
unsigned int WINAPI SetTriggerinvert(int mode)
Description This function will set whether an acquisition will be triggered on a rising or falling edge
external trigger.
Parameters int mode: trigger mode
Valid values:
0. Rising Edge
1. Falling Edge
Return unsigned int
DRV_SUCCESS Trigger mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Trigger mode invalid.
DRV_NOT_AVAILABLE Feature not available.
See also Trigger Modes SetTriggerMode SetFastExtTrigger
SetTriggerMode

unsigned int WINAPI SetTriggerMode(int mode)

Description This function will set the trigger mode that the camera will operate in.
Parameters int mode: trigger mode
Valid values:
0. Internal
1. External
6. External Start (only valid in Fast Kinetics mode)
7. External Exposure (Bulb)
9. External FVB EM (only valid for EM Newton models in FVB mode)
10. Software Trigger
Return unsigned int
DRV_SUCCESS Trigger mode set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Trigger mode invalid.
See also Trigger Modes SetFastExtTrigger

SECTION 11
Page 219

TECHNOLOGY

ANDOR"
-

FUNCTIONS

SetlODirection

unsigned int WINAPI SetlODirection(int indeXx, int iDirection)

Description

Available in some systems are a number of 10’s that can be configured to be inputs or

outputs. This function sets the current state of a particular 10.

Parameters int index: 10 index

Valid values: 0 to GetNumberlO() - 1
int iDirection: requested direction for this index.

0: Input
1: Output
Return unsigned int
DRV_SUCCESS

DRV_NOT_INITIALIZED
DRV_ACQUIRING
DRV_P1INVALID
DRV_P2INVALID
DRV_NOT_AVAILABLE

See also

IO direction set.
System not initialized.
Acquisition in progress.
Invalid index.

Invalid direction.

Feature not available.

GetNumberlO GetlOLevel GetlODirection SetlOLevel

SetlOLevel

unsigned int WINAPI SetlOLevel(int index, int iLevel)

Description Available in some systems are a number of IO’s that can be configured to be inputs or
outputs. This function sets the current state of a particular 10.
Parameters int index: 10 index
Valid values: 0 to GetNumberlO() - 1
int iLevel: current level for this index.
0: Low
1: High
Return unsigned int
DRV_SUCCESS IO level set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid index.
DRV_P2INVALID Invalid level.
DRV_NOT_AVAILABLE Feature not available.
See also GetNumberlO GetlOLevel GetlODirection SetlODirection

SECTION 11

Page 220

ANDOR"
o ANDY FUNCTIONS

SetUserEvent
unsigned int WINAPI SetUserEvent(HANDLE userEvent)

Description THIS FUNCTION IS RESERVED.

SetUSGenomics

unsigned int WINAPI SetUSGenomics(long width, long height)
Description THIS FUNCTION IS RESERVED.

SetVerticalRowBuffer
unsigned int WINAPI SetVerticalRowBuffer(int rows)

Description THIS FUNCTION IS RESERVED.

SECTION 11
Page 221

ANDOR"
* AN FUNCTIONS

SetVerticalSpeed
unsigned int WINAPI SetVerticalSpeed(int index)

Description Deprecated see Note:
This function will set the vertical speed to be used for subsequent acquisitions
Parameters int index: index into the vertical speed table

Valid values 0 to GetNumberVerticalSpeeds-1

Return unsigned int
DRV_SUCCESS Vertical speed set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Index out of range.
See also GetNumberVerticalSpeeds, GetVerticalSpeed

NOTE: Deprecated by SetVSSpeed.

SetVirtualChip
unsigned int WINAPI SetVirtualChip(int state)

Description THIS FUNCTION IS RESERVED.

SECTION 11
Page 222

ANDOR"
& A FUNCTIONS

SetVSAmplitude
unsigned int WINAPI SetVSAmplitude(int state)

Description If you choose a high readout speed (a low readout time), then you should also consider

increasing the amplitude of the Vertical Clock Voltage.

There are five levels of amplitude available for you to choose from:

e Normal
o +1
o +2
o +3
e +4

Exercise caution when increasing the amplitude of the vertical clock voltage, since higher
clocking voltages may result in increased clock-induced charge (noise) in your signal. In
general, only the very highest vertical clocking speeds are likely to benefit from an
increased vertical clock voltage amplitude.

Parameters int state: desired Vertical Clock Voltage Amplitude
Valid values:
0 - Normal

1->4 — Increasing Clock voltage Amplitude

Return unsigned int
DRV_SUCCESS Amplitude set.
DRV_NOT_INITIALIZED System not initialized.
DRV_NOT_AVAILABLE Your system does not support this feature
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Invalid amplitude parameter.

NOTE: Available in iXon, iKon and Newton.

SECTION 11
Page 223

ANDOR"

FUNCTIONS

SetVSSpeed

unsigned int WINAPI SetVSSpeed(int index)

Description
Parameters

Return

See also

This function will set the vertical speed to be used for subsequent acquisitions
int index: index into the vertical speed table

Valid values 0 to GetNumberVSSpeeds-1

unsigned int

DRV_SUCCESS Vertical speed set.
DRV_NOT_INITIALIZED System not initialized.
DRV_ACQUIRING Acquisition in progress.
DRV_P1INVALID Index out of range.

GetNumberVSSpeeds, GetVSSpeed, GetFastestRecommendedVSSpeed

ShutDown

unsigned int WINAPI ShutDown(void)

Description
Parameters
Return

See also

This function will close the AndorMCD system down.
NONE

unsigned int

DRV_SUCCESS System shut down.
CoolerOFF, CoolerON, SetTemperature, GetTemperature

NOTE: For Classic & ICCD systems, the temperature of the detector should be above -20°C before

shutting down the system.

SECTION 11
Page 224

ANDOR"

FUNCTIONS

unsigned int WINAPI StartAcquisition(void)

Description

Parameters
Return

See also

StartAcquisition

This function starts an acquisition. The status of the acquisition can be monitored via

GetStatus().

NONE
unsigned int
DRV_SUCCESS

DRV_NOT_INITIALIZED
DRV_ACQUIRING
DRV_VXDNOTINSTALLED
DRV_ERROR_ACK
DRV_INIERROR
DRV_ACQERROR
DRV_ERROR_PAGELOCK
DRV_INVALID_FILTER
DRV_BINNING_ERROR

Acquisition started.

System not initialized.

Acquisition in progress.

VxD not loaded.

Unable to communicate with card.

Error reading “DETECTOR.INI”.
Acquisition settings invalid.

Unable to allocate memory.

Filter not available for current acquisition.

Range not multiple of horizontal binning.

GetStatus, GetAcquisitionTimings, SetAccumulationCycleTime, SetAcquisitionMode,

SetExposureTime, SetHSSpeed, SetKineticCycleTime, SetMultiTrack,

SetNumberAccumulations, SetNumberKinetics, SetReadMode, SetSingleTrack,

SetTriggerMode, SetVSSpeed

SECTION 11
Page 225

ANDOR"
& A FUNCTIONS

UnMapPhysicalAddress
unsigned int WINAPI UnMapPhysicalAddress(void)

Description THIS FUNCTION IS RESERVED.

SECTION 11
Page 226

ANDOR"
o ANDY FUNCTIONS

WaitForAcquisition

unsigned int WINAPI WaitForAcquisition(void)

Description

Parameters
Return

See also

WaitForAcquisition can be called after an acquisition is started using StartAcquisition to
put the calling thread to sleep until an Acquisition Event occurs. This can be used as a
simple alternative to the functionality provided by the SetDriverEvent function, as all
Event creation and handling is performed internally by the SDK library.

Like the SetDriverEvent functionality it will use less processor resources than
continuously polling with the GetStatus function. If you wish to restart the calling thread

without waiting for an Acquisition event, call the function CancelWait.

An Acquisition Event occurs each time a new image is acquired during an Accumulation,
Kinetic Series or Run-Till-Abort acquisition or at the end of a Single Scan Acquisition.

If a second event occurs before the first one has been acknowledged, the first one will be
ignored. Care should be taken in this case, as you may have to use CancelWait to exit
the function.

NONE

unsigned int

DRV_SUCCESS Acquisition Event occurred
DRV_NOT_INITIALIZED System not initialized.

DRV_NO_NEW_ DATA Non-Acquisition Event occurred.(e.g. CancelWait ()

called)

StartAcquisition, CancelWait

WaitForAcquisitionByHandle

unsigned int WINAPI WaitForAcquisitionByHandle(long cameraHandle)

Description

Parameters
Return

Whilst using multiple cameras WaitForAcquisitionByHandle can be called after an
acquisition is started using StartAcquisition to put the calling thread to sleep until an
Acquisition Event occurs. This can be used as a simple alternative to the functionality
provided by the SetDriverEvent function, as all Event creation and handling is performed
internally by the SDK library. Like the SetDriverEvent functionality it will use less
processor resources than continuously polling with the GetStatus function. If you wish to
restart the calling thread without waiting for an Acquisition event, call the function
CancelWait. An Acquisition Event occurs each time a new image is acquired during an
Accumulation, Kinetic Series or Run-Till-Abort acquisition or at the end of a Single Scan
Acquisition.

Long cameraHandle: handle of camera to put into wait state.

unsigned int
DRV_SUCCESS Acquisition Event occurred.
DRV_P1INVALID Handle not valid.

SECTION 11
Page 227

ANDOR"
S A FUNCTIONS

DRV_NO_NEW_DATA Non-Acquisition Event occurred.(eg CancelWait () called)

See also CancelWait, GetCameraHandle, StartAcquisition, WaitForAcquisition,

WaitForAcquisitionTimeOut, WaitForAcquisitionByHandleTimeOut.

SECTION 11
Page 228

ANDOR"
& A FUNCTIONS

WaitForAcquisitionByHandleTimeOut

unsigned int WINAPI WaitForAcquisitionByHandleTimeOut (long cameraHandle, int iTimeOutMs)

Description

Parameters

Return

See also

Whilst using multiple cameras WaitForAcquisitionByHandle can be called after an
acquisition is started using StartAcquisition to put the calling thread to sleep until an
Acquisition Event occurs. This can be used as a simple alternative to the functionality
provided by the SetDriverEvent function, as all Event creation and handling is performed
internally by the SDK library. Like the SetDriverEvent functionality it will use less processor
resources than continuously polling with the GetStatus function. If you wish to restart the
calling thread without waiting for an Acquisition event, call the function CancelWait. An
Acquisition Event occurs each time a new image is acquired during an Accumulation,
Kinetic Series or Run-Till-Abort acquisition or at the end of a Single Scan Acquisition. If an
Acquisition Event does not occur within _TimeOutMs milliseconds,
WaitForAcquisitionTimeOut returns DRV_NO_NEW_DATA

Long cameraHandle: handle of camera to put into wait state.
int iTimeOutMs: Time before returning DRV_NO_NEW_DATA if no Acquisition Event

occurs.

unsigned int

DRV_SUCCESS Acquisition Event occurred.

DRV_P1INVALID Handle not valid.

DRV_NO_NEW_DATA Non-Acquisition Event occurred.(eg CancelWait () called, time out)

CancelWait, GetCameraHandle, StartAcquisition, WaitForAcquisition,

WaitForAcquisitionByHandle, WaitForAcquisitionTimeOut.

SECTION 11
Page 229

ANDOR"
& A FUNCTIONS

WaitForAcquisitionTimeOut

unsigned int WINAPI WaitForAcquisitionTimeOut (int iTimeOutMs)

Description

Parameters

Return

See also

WaitForAcquisitionTimeOut can be called after an acquisition is started using
StartAcquisition to put the calling thread to sleep until an Acquisition Event occurs. This
can be used as a simple alternative to the functionality provided by the SetDriverEvent
function, as all Event creation and handling is performed internally by the SDK library. Like
the SetDriverEvent functionality it will use less processor resources than continuously
polling with the GetStatus function. If you wish to restart the calling thread without waiting
for an Acquisition event, call the function CancelWait. An Acquisition Event occurs each
time a new image is acquired during an Accumulation, Kinetic Series or Run-Till-Abort
acquisition or at the end of a Single Scan Acquisition. If an Acquisition Event does not
occur within _TimeOutMs milliseconds, WaitForAcquisitionTimeOut returns
DRV_NO_NEW_DATA

int iTimeOutMs: Time before returning DRV_NO_NEW_DATA if no Acquisition Event

occurs.

DRV_SUCCESS Acquisition Event occurred.
DRV_NO_NEW_DATA Non-Acquisition Event occurred.(eg CancelWait () called, time out)

CancelWait, StartAcquisition, WaitForAcquisition, WaitForAcquisitionByHandle,

WaitForAcquisitionByHandleTimeOut.

SECTION 11
Page 230

ANDOR"

FUNCTIONS

WhiteBalance

unsigned int WINAPI WhiteBalance (WORD* wRed, WORD* wGreen, WORD* wBlue, float * fRelR,
float * fRelB, WhiteBalancelnfo * info)

Description

Parameters

Return

See also

For colour sensors only

Calculates the red and blue relative to green factors to white balance a colour image
using the parameters stored in info.

Before passing the address of an WhiteBalancelnfo structure to the function the iSize
member of the structure should be set to the size of the structure. In C++ this can be
done with the line:

info-> iSize = sizeof(WhiteBalancelnfo);

Below is the WhiteBalancelnfo structure definition and a description of its members:
typedef struct WHITEBALANCEINFO {

int iSize; // Structure size.

int iX; // Number of X pixels. Must be >2.

intiY; // Number of Y pixels. Must be >2.

int iAlgorithm; // Algorithm to used to calculate white balance.

int iROI_left; // Region Of Interest from which white balance is calculated

int iROI_right; // Region Of Interest from which white balance is calculated

int iROI_top; // Region Of Interest from which white balance is calculated

int iROI_bottom; // Region Of Interest from which white balance is calculated

} WhiteBalancelnfo;

iX and iY are the image dimensions. The number of elements of the input, red, green and
blue arrays are iX xiY.

iAlgorithm sets the algorithm to use. The function sums all the colour values per each
colour field within the Region Of Interest (ROI) and calculates the relative to green values
as: 0) _fRelR = GreenSum / RedSum and _fRelB = GreenSum / BlueSum; 1) _fRelR =
2/3 GreenSum / RedSum and _fRelB = 2/3 GreenSum / BlueSum, giving more
importance to the green field.

iROI_left, iROI_right, iROI_top and iROI_bottom define the ROl with the constraints:
0 £ iROI_left < iROI_right £ iX and 0 £ iROI_ bottom < iROI_ top £ iX

WORD* wRed: pointer to red field.

WORD* wGreen: pointer to green field.

WORD* wBlue: pointer to blue field.

float* fRelR: pointer to the relative to green red factor.
float* fRelB: pointer to the relative to green blue factor.

WhiteBalancelnfo* info: pointer to white balance information structure

unsigned int

SUCCESS White balance calculated.

DRV_P1INVALID Invalid pointer (i.e. NULL).

DRV_P2INVALID Invalid pointer (i.e. NULL).

DRV_P3INVALID Invalid pointer (i.e. NULL).

DRV_P4INVALID Invalid pointer (i.e. NULL).

DRV_P5INVALID Invalid pointer (i.e. NULL).

DRV_P6INVALID One or more parameters in info is out of range
DRV_DIVIDE_BY_ZERO_ERROR The sum of the green field within the ROl is zero. _fRelR and _fRelB

are set to 1

Demosaiclmage, GetMostRecentColorimage16

SECTION 11
Page 231

ANDOR
*AT0Y ERROR CODES

SECTION 12 - ERROR CODES

CODE ERROR CODE ERROR
DRV_ERROR_CODES 20001 DRV_P1INVALID 20066
DRV_SUCCESS 20002 DRV_P2INVALID 20067
DRV_VXDNOTINSTALLED 20003 DRV_P3INVALID 20068
DRV_ERROR_SCAN 20004 DRV_P4INVALID 20069
DRV_ERROR_CHECK_SUM 20005 DRV_INIERROR 20070
DRV_ERROR_FILELOAD 20006 DRV_COFERROR 20071
DRV_UNKNOWN_FUNCTION 20007 DRV_ACQUIRING 20072
DRV_ERROR_VXD_INIT 20008 DRV_IDLE 20073
DRV_ERROR_ADDRESS 20009 DRV_TEMPCYCLE 20074
DRV_ERROR_PAGELOCK 20010 DRV_NOT_INITIALIZED 20075
DRV_ERROR_PAGE_UNLOCK 20011 DRV_PS5INVALID 20076
DRV_ERROR_BOARDTEST 20012 DRV_P6INVALID 20077
DRV_ERROR_ACK 20013 DRV_INVALID_MODE 20078
DRV_ERROR_UP_FIFO 20014 DRV_INVALID_FILTER 20079
DRV_ERROR_PATTERN 20015 DRV_I2CERRORS 20080
DRV_ACQUISITION_ERRORS 20017 DRV_DRV_I2CDEVNOTFOUND 20081
DRV_ACQ_BUFFER 20018 DRV_I2CTIMEOUT 20082
DRV_ACQ_DOWNFIFO_FULL 20019 DRV_P7INVALID 20083
DRV_PROC_UNKNOWN_INSTRUCTION 20020 DRV_USBERROR 20089
DRV_ILLEGAL_OP_CODE 20021 DRV_IOCERROR 20090
DRV_KINETIC_TIME_NOT_MET 20022 DRV_NOT_SUPPORTED 20091
DRV_KINETIC_TIME_NOT_MET 20022 DRV_USB_INTERRUPT_ENDPOINT_ERROR 20093
DRV_ACCUM_TIME_NOT_MET 20023 DRV_RANDOM_TRACK_ERROR 20094
DRV_NO_NEW_DATA 20024 DRV_INVALID_TRIGGER_MODE 20095
DRV_SPOOLERROR 20026 DRV_LOAD_FIRMWARE_ERROR 20096
DRV_TEMPERATURE_CODES 20033 DRV_DIVIDE_BY_ZERO_ERROR 20097
DRV_TEMPERATURE_OFF 20034 DRV_INVALID_RINGEXPOSURES 20098
DRV_TEMPERATURE_NOT_STABILIZED 20035 DRV_BINNING_ERROR 20099
DRV_TEMPERATURE_STABILIZED 20036 DRV_ERROR_NOCAMERA 20990
DRV_TEMPERATURE_NOT_REACHED 20037 DRV_NOT_SUPPORTED 20991
DRV_TEMPERATURE_OUT_RANGE 20038 DRV_NOT_AVAILABLE 20992
DRV_TEMPERATURE_NOT_SUPPORTED 20039 DRV_ERROR_MAP 20115
DRV_TEMPERATURE_DRIFT 20040 DRV_ERROR_UNMAP 20116
DRV_GENERAL_ERRORS 20049 DRV_ERROR_MDL 20117
DRV_INVALID_AUX 20050 DRV_ERROR_UNMDL 20118
DRV_COF_NOTLOADED 20051 DRV_ERROR_BUFFSIZE 20119
DRV_FPGAPROG 20052 DRV_ERROR_NOHANDLE 20121
DRV_FLEXERROR 20053 DRV_GATING_NOT_AVAILABLE 20130
DRV_GPIBERROR 20054 DRV_FPGA_VOLTAGE_ERROR 20131
DRV_DATATYPE 20064 DRV_BINNING_ERROR 20099
DRV_DRIVER_ERRORS 20065 DRV_INVALID_AMPLIFIER 20100

SECTION 12

Page 232

ANDOR"
o ANDY DETECTOR.INI

SECTION 13 - DETECTOR.INI

DETECTOR.INI EXPLAINED
All systems shipped from Andor contain a configuration file called "Detector.ini". This file is used to
configure both the Andor software and hardware for the system. It contains information regarding the CCD

chip, A/Ds and cooling capabilities.

The file contains four sections. The start of each section is denoted by [name], where name is the name of
the section. The following two sections are common to all detector.ini files:

o [System]
e [Cooling]
The names of the remaining sections are given by entries in the [System] section.

SECTION 13
Page 233

ANDOR"
o ANDY DETECTOR.INI

[SYSTEM]
This section has 3 entries that describe the controller, head models and the mode for operation. Each entry is

described in more detail below:

e Controller: gives the section name where the controller (plug-in card) details can be found. Further

details on this section are given below.

e Head: gives the section name where the detector head details can be found. Further details on this

section are given below.

e Operation: this item related to the overall system type, i.e. whether the system is a PDA, CCD ICCD
or InGaAs. This item has the effect of changing the “Acquisition” dialog within the software so that

only those options relating to the system type are displayed.
Possible values are as follows:
o 2for PDA
o 3forInGaAs
e 4forCCD
e 5forlCCD
EXAMPLE:

[System]
Controller=CC-010
Head=DV437
Operation=4

SECTION 13
Page 234

TECHNOLOGY

ANDOR"
-

DETECTOR.INI

[COOLING]

This section does not contain a fixed number of entries. However, each entry has the same basic structure

and purpose. The purpose being to tell the software the range of temperatures to offer the user and the range

of temperature over which the system can measure. The structure of each item is:

Itemname =a,b,c,d
itemname

a

b

c

d

Example:

[Cooling]
Single=28,-30,28,-100
Three=20,-60,28,-100
Vacuum=20,-100,28,-100

Page 235

SECTION 13

ANDOR"
*AT0Y DETECTOR.INI

[DETECTOR]

This section details the detector head. It is the most complex section in the file and contains 10 or more items.

Format

Format = x,y

Gives the active pixel dimensions as X, y. x is the number of pixels along the readout register axis. y is the

number of pixel perpendicular to the readout axis.

DummyPixels

DummyPixels =a, b, ¢, d

Gives the number of columns and row that are present on the device but do not respond to light. The dummy
columns are a combination of dark columns, which run the full height of the sensor, and dummy pixels in the

shift register, where:

number of dummy columns at non-amplifier end
number of dummy columns at amplifier end
number of dummy rows at top of CCD

number of dummy rows at bottom of CCD

Q 0 T o

DataHShiftSpeed
DataHShiftSpeed =a, b, c, d, e

Lists the speeds at which the charge can be moved in the shift register. This is also equivalent to the

digitization speed in microseconds. Where:
a default speed

b, c ,d, e allowed speeds fastest first

DataVShiftSpeed
DataVShiftSpeed =a, b, c, d, e

This lists the speeds, in microseconds, at which the CCD rows can be vertically shifted. These speeds are
used during CCD readout. Where:

a default speed

b, c, d, e allowed speeds fastest first

SECTION 13
Page 236

ANDOR"
o ANDY DETECTOR.INI

DummyHShiftSpeed
DummyHShiftSpeed = a, b, ¢, d, e

This lists the speeds, in microseconds, at which the charge can be moved in the shift register. These speeds
are used when the charge been shifted in the amplifier does not need to be digitized. This allows faster keep

clean cycles and faster readout when pixel skipping is implemented. Where:
a default speed

b,c,d, e allowed speeds fastest first

DummyVShiftSpeed
DummyVShiftSpeed =a, b, ¢, d, e

This lists the speeds, in microseconds, at which the CCD rows can be vertically shifted. These speeds are

used during CCD keep cleans. Where:

a default speed
b,c,d, e allowed speeds fastest first

VerticalHorizontalTime

VerticalHorizontalTime = a,b,c,d,e

This lists the time, in microseconds, which must be taken into account when timing calculations are been

done. Where:
a default speed
b, ¢, d, e allowed speeds fastest first

CodeFile

CodeFile = filename.ext

This gives the file name of the micro-code uploaded to the microprocessor on the plug-in card. This field is
typically PCI_29k.COF for standard systems and PCII29K.COF for I’c compatible cards.

SECTION 13
Page 237

ANDOR"
o ANDY DETECTOR.INI

FlexFile

FlexFile = filename.ext

This gives the file name of the logic uploaded to the Field Programmable Gate Array on the plug-in card.
(This field is only used by the PCI version of the system.) This field is typically PCl_FPGA.RBF for standard
systems and PCIIFPGA.RBF for I’c compatible cards.

Cooling
Cooling = type
This gives the type of cooling. The type relates back to the cooling section.
Type
Type = type
This value specifies whether the head contains a Standard (0) or a Frame Transfer (1) CCD. The default is
Standard.

FKVerticalShiftSpeed
FKVerticalShiftSpeed = speed
This specifies the “Fast Kinetics” vertical shift speed.
Gain
Gain=a

This specifies whether the system has software controllable Gain/Mode settings.
0 = Not software selectable.
1 = Software selectable.

PhotonCountingCCD
PhotonCountingCCD = a

This specifies whether the system contains a L3 Vision sensor from Marconi
0 = Standard CCD
1 = L3 Vision sensor

SECTION 13
Page 238

ANDOR"
o ANDY DETECTOR.INI

EMCCDRegisterSize
EMCCDRegisterSize = a

This specifies the length on the electron multiplying register in L3 Vision CCD
iStar
iStar = a

This specifies whether the system is an iStar or a standard ICCD
0 = Standard ICCD
1 =iStar
SlowVerticalSpeedFactor

SlowVerticalSpeedFactor = a

This specifies the factor by which the vertical shifted has been slowed. This is used for those CCD’s that are

not capable at running at 16us. The only possible value is 7.

HELLFunction
HELLFunction = file

The file specified contains the instructions required to perform readout of an iXon CCD. It is specific to each
type of CCD.

HELLLoop1
HELLLoop1 = file

The file specified contains generic instructions for readout of an iXon CCD and as such is not specific to a

particular CCD.
ADChannels
ADChannels = a{,b}

This line indicates the types of ADChannels available for use and the default selection. a is the default type

and is followed by a list of all possible types.

AD2DataHSSpeed

AD2DataHSSpeed = default, min, max
This line specifies the possible horizontal readout speeds. min and max specify the range of readout times

available in microseconds.

SECTION 13
Page 239

ANDOR"
o ANDY DETECTOR.INI

AD2DumpHSSpeed
AD2DumpHSSpeed = default, min, max

This is similar to AD2DataHSSpeed but specifies the readout speeds available when performing a dump (i.e.

discarding) of data from the CCD.

AD2BinHSSpeed
AD2BinHSSpeed = default, min, max
This is similar to AD2DataHSSpeed but specifies the readout speeds available when binning (i.e. summing
values from blocks of neighbouring pixels) data from the CCD.

AD2Pipeline

AD2Pipeline = a, b, c: See PipeLine in the controller section
iXon
Ixon =a

Specifies whether the CCD is an iXon camera; if so the line will read ‘Ixon=1". If this line is missing the CCD
is not an iXon.

EXAMPLE DETECTOR.INI FILES

DH220
[DH220]
Format=1024,1
DummyPixels=0,0,0,0
DataHShiftSpeed=16,1,2,16,32
DataVShiftSpeed=16,16,0,0,0
DummyHShiftSpeed=16,1,2,16,32
DummyVShiftSpeed=16,16,0,0,0
VerticalHorizontalTime=16,16,0,0,0
CodeFile=Instapda.cof
Pixel=25.0,2500.0
Cooling=Single

DV420
[DV420]
Format=1024,256
DummyPixels=8,8,0,0
DataHShiftSpeed=16,1,2,16,32
DataVShiftSpeed=16,16,0,0,0
DummyHShiftSpeed=16,1,2,16,32
DummyVShiftSpeed=16,16,0,0,0
VerticalHorizontalTime=16,16,0,0,0
CodeFile=Pci_29k.cof
FlexFile = pci_fpga.rbf

SECTION 13

Page 240

ANDOR"

DETECTOR.INI

Pixel=25.0,25.0
Cooling=Vacuum
FKVerticalShiftSpeed=16.0e-6

[DV437]

Format=512,512
DummyPixels=24,24,16,528
DataHShiftSpeed=16,1,2,16,32
DataVShiftSpeed=16,16,0,0,0
DummyHShiftSpeed=16,1,2,16,32
DummyVShiftSpeed=16,16,0,0,0
VerticalHorizontalTime=16,16,0,0,0
Pixel=13.0,13.0

Cooling=Vacuum
CodeFile=pci_29k.cof
FlexFile=pci_fpga.rbf

Type=1

Page 241

DV437

SECTION 13

ANDOR"
o ANDY DETECTOR.INI

[CONTROLLER]

This section details the controller card.
ReadOutSpeeds
ReadOutSpeeds = a,b,c,d-
Lists the readout speeds available on the specified plug-in card. These values are used in conjunction with
the values specified in the head section to generate the final list of available speeds.
PipeLine
PipeLine=a,b,c,d,e,f,g,h

This lists the pipeline depth that must be used the microprocessor to synchronize the reading of the AD with
the digitization process. The actual value used is based on a number of factors and is beyond this
discussion.

Type
Type=a
This specifies whether the plug-in card is ISA or PCI compatible.
Example:

[CC-010]
ReadOutSpeeds=1,2,16,32
PipeLine=2,1,1,1,0,0,0,0
Type=PCI

SECTION 13
Page 242

	SECTION 1 - INTRODUCTION
	TECHNICAL SUPPORT
	SOFTWARE IMPROVEMENTS AND ADDITIONAL FEATURES

	SECTION 2 - SOFTWARE INSTALLATIONS
	PC requirements
	SDK WINDOWS INSTALLATION
	Windows Troubleshooting

	SDK LINUX INSTALLATION
	LABVIEW INSTALLATION
	Linux Troubleshooting

	SECTION 3 - READOUT MODES
	INTRODUCTION
	Full Vertical Binning
	Single-Track
	Multi-Track
	Random-Track
	Image
	Cropped

	SECTION 4 - ACQUISITION MODES
	ACQUISITION MODE TYPES
	Single Scan
	Accumulate
	Kinetic Series
	Run Till Abort
	Fast Kinetics
	Frame Transfer

	SECTION 5 - TRIGGERING
	TRIGGER MODES
	Internal
	External
	External Start
	External Exposure
	External FVB EM
	Software

	SECTION 6 - SHIFT SPEEDS
	SECTION 7 - SHUTTER CONTROL
	SHUTTER MODES
	Fully Auto
	Hold Open
	Hold Closed

	SHUTTER TYPE
	SHUTTER TRANSFER TIME

	SECTION 8 - TEMPERATURE CONTROL
	SECTION 9 - SPECIAL GUIDES
	CONTROLLING MULTIPLE CAMERAS
	USING MULTIPLE CAMERA FUNCTIONS
	DATA RETRIEVAL METHODS
	How to determine when new data is available
	Retrieving Image Data

	DETERMINING CAMERA CAPABILITIES
	Retrieving capabilities from the camera
	Other Capabilities

	iCam

	SECTION 10 - EXAMPLES
	INTRODUCTION
	RUNNING THE EXAMPLES
	C
	LabVIEW
	Visual Basic

	FLOW CHART OF THE FUNCTION CALLS NEEDED TO CONTROL ANDOR CAMERA

	SECTION 11 - FUNCTIONS
	
	AbortAcquisition
	CancelWait
	CoolerOFF
	CoolerON
	DemosaicImage
	EnableKeepCleans
	FreeInternalMemory
	GetAcquiredData
	GetAcquiredData16
	GetAcquiredFloatData
	GetAcquisitionProgress
	GetAcquisitionTimings
	GetAdjustedRingExposureTimes
	GetAIIDMAData
	GetAmpDesc
	GetAmpMaxSpeed
	GetAvailableCameras
	GetBackground
	GetBitDepth
	GetCameraEventStatus
	GetCameraHandle
	GetCameraInformation
	GetCameraSerialNumber
	GetCapabilities
	GetControllerCardModel
	GetCurrentCamera
	GetDDGPulse
	GetDDGIOCFrequency
	GetDDGIOCNumber
	GetDDGIOCPulses
	GetDetector
	GetDICameraInfo
	GetDualExposureTimes
	GetEMCCDGain
	GetFIFOUsage
	GetFilterMode
	GetFKExposureTime
	GetFKVShiftSpeed
	GetFKVShiftSpeedF
	GetHardwareVersion
	GetHeadModel
	GetHorizontalSpeed
	GetHSSpeed
	GetHVflag
	GetID
	GetImageFlip
	GetImageRotate
	GetImages
	GetImages16
	GetImagesPerDMA
	GetIRQ
	GetKeepCleanTime
	GetMaximumBinning
	GetMaximumExposure
	GetMCPGain
	GetMCPGainRange
	GetMCPVoltage
	GetMetaDataInfo
	GetMinimumImageLength
	GetMostRecentColorImage16
	GetMostRecentImage
	GetMostRecentImage16
	GetMSTimingsData
	GetMSTimingsEnabled
	GetNewData
	GetNewData16
	GetNewData8
	GetNewFloatData
	GetNumberADChannels
	GetNumberAmp
	GetNumberAvailableImages
	GetNumberDevices
	GetNumberFKVShiftSpeeds
	GetNumberHorizontalSpeeds
	GetNumberHSSpeeds
	GetNumberNewImages
	GetNumberPreAmpGains
	GetNumberRingExposureTimes
	GetNumberIO
	GetNumberVerticalSpeeds
	GetNumberVSAmplitudes
	GetNumberVSSpeeds
	GetOldestImage
	GetOldestImage16
	GetPhysicalDMAAddress
	GetPixelSize
	GetPreAmpGain
	GetReadOutTime
	GetRegisterDump
	GetRingExposureRange
	GetSizeOfCircularBuffer
	GetSlotBusDeviceFunction
	GetSoftwareVersion
	GetSpoolProgress
	GetStatus
	GetTemperature
	GetTemperatureF
	GetTemperatureRange
	GetTemperatureStatus
	GetTotalNumberImagesAcquired
	GetIODirection
	GetIOLevel
	GetVersionInfo
	GetVerticalSpeed
	GetVirtualDMAAddress
	GetVSSpeed
	GPIBReceive
	GPIBSend
	I2CBurstRead
	I2CBurstWrite
	I2CRead

	SECTION 12 - ERROR CODES
	SECTION 13 - DETECTOR.INI
	DETECTOR.INI EXPLAINED
	[SYSTEM]
	[COOLING]
	[DETECTOR]
	EXAMPLE DETECTOR.INI FILES
	[CONTROLLER]

