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ABSTRACT

The unsigned magnetic flux content in flux concentrations in two active

regions are calculated by using a set of 248 high resolution SOHO/MDI

magnetograms for each active region. Data for flaring active region NOAA

9077 (July 14, 2000) and non-flaring active region NOAA 0061 (Aug 09, 2002)

were analyzed. We present an algorithm to automatically select and quantify

magnetic flux concentrations above a threshold p. Each active region is analyzed

using 4 different values of the threshold, p (p = 25, 50, 75 and 100 G). Probability

distribution functions (PDFs) and cumulative distribution functions (CDFs)

of the magnetic flux were calculated and approximated by the log-normal,

exponential and power law functions in the range of flux Φ > 1019 Mx. The

Kolmogorov-Smirnov test applied for each of the approximations, showed that

the observed distributions are consistent with the log-normal approximation

only. Neither exponential, nor power law functions can approximate satisfactory

the observed distributions. The parameters of the log-normal distribution do

not depend on the threshold value, however they are different for the two active

regions. For flaring active region 9077, the expectation value of the magnetic

flux content is µ = 28.1× 1018 Mx and the standard deviation of the log-normal

distribution, σ = 79.0 × 1018 Mx. For non-flaring active region NOAA 0061

these values are: µ = 23.8 × 1018 Mx and σ = 29.6 × 1018 Mx. The log-normal

character of the observed distribution functions suggests that the process of

fragmentation dominates over the process of concentration in the formation of

the magnetic structure in an active region.

Subject headings: Sun: magnetic field; magnetic elements; distribution function
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1. Introduction

Magnetic fields in the solar atmosphere are thought to be concentrated in thin flux

tubes anchored in the photosphere, where their footpoints form concentrated clusters of

magnetic flux. Turbulent flows in the photospheric plasma braid and intertwine the flux

tubes causing one of the mechanisms for the heating of the corona (Parker 1996, see Priest

& Forbes 2000 for references). Information on the dynamics and statistical characteristics

of the photospheric magnetic field is necessary when analyzing processes in the corona

due to the magnetic coupling between the photosphere and the corona. Some of these

studies include: analysis of generation and propagation of waves in the solar atmosphere

(Thomas & Stanchfield 2000, Bogdan et al. 2003); modeling of coronal heating (Gudiksen

& Nordlund 2002, Fludra & Ireland 2003), exploration of the magnetic coupling between

the photosphere and the corona (Handy & Schrijver 2001, Bewsher et al. 2002, Moore at al.

2003). In addition, such information is usually used as input parameters and/or diagnostic

criteria in the modeling of the interaction between the turbulent plasma and the magnetic

field in the convective zone and in the photosphere (Petrovay & Szakaly 1993, Tao et al.

1995, Schrijver et al. 1997a, Fan et al. 2003, Longcope et al. 2003, Janßen et al. 2003); in

the solar dynamo models (Cadavid et al. 1994, Lawrence et al. 1995, Stein & Nordlund

2002), small-scale turbulent dynamo action (Cattaneo et al. 2001) and in modeling of

magnetic reconnection in solar flares (Longcope & Noonan 2000, Hood et al. 2002).

Recently, Longcope et al. (2003) proposed a viscoelastic theory of the interaction

between turbulent flows and fibril magnetic fields, which is capable of resolving the ”dynamo

quenching” problem and of explaining how a mean field dynamo operating on fibril fields

can produce flux tubes of field strength exceeding turbulent equipartition strength. The

model is based on an assumption of the back-reaction of the fibrils (magnetic flux tubes)

on the plasma flow. All aspects of the back-reaction depend on the distribution function of

magnetic flux in fibrils.

Modern observational technique allows us to calculate the distribution function of flux

concentrations of the magnetic field at the photospheric level only. In quiet Sun areas, where

the flux concentrations are widely separated, the concentrations can be determined much

more easy than in an active region area, where they are tightly packed. As a consequence,

studies of the distribution of magnetic flux in quiet sun regions are more popular. Thus,

Wang et al. (1995) studied the dynamics and statistics of the network and intranetwork

magnetic fields using Big Bear Solar Observatory videomagnetograph data. The authors

argued that the distribution function follows a power law. They found a power index of

−1.68 for areas whose flux was in the range (0.2 − 1) × 1018 Mx (intranetwork fields) and

−1.27 for areas whose flux was in the range (2 − 10) × 1018 Mx (network elements).
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Schrijver et al. (1997a) used high resolution data from the Michelson Doppler Imager

(MDI) on-board SOHO of a quiet network area. They reported that the flux distribution

function follows an exponential law with a slope of approximately 1 × 10−18 Mx−1 in areas

where the flux ranges from 1 to 5 ×1018 Mx. The distribution of magnetic flux in flux

concentrations in a plage area (outside of large sunspots) of active region NOAA 7962

also was analyzed by Schrijver et al. (1997b). The authors reported that the distribution

function in the plage areas is less steep than that for the quiet sun, with the exponential

slope slightly varying as a function of the flux. To explain the shape of the observed

distribution, the authors modeled the distribution of flux concentrations assuming that

three primary processes underlie the creation of the distribution of flux concentrations.

Namely, merging, cancellation and fragmentation of flux concentrations. Under this

assumption, the exponential slope should vary with the inverse proportion to the square

root of the average flux density, and so a satisfactory agreement between the observed and

modeled distributions in the range (20 − 150) × 1018 Mx was reached.

In the present study, we calculate and analyze the distribution of magnetic flux

concentrations in the two well developed active regions in the range of flux Φ > 1019 Mx.

We payed special attention to the analytical approximation of the observed distribution.

2. Observational data

We analyzed SOHO/MDI high-resolution line-of-sight magnetograms (Scherrer et al.

1995) of two active regions. The data for the first one, NOAA 9077, were obtained on July

14, 2000 (Figure 1). At this day, this mature active region produced the famous Bastille

day flare of X5.7 X-ray class. About 130 flares occurred during its disk passage on the Sun.

The second active region NOAA 0061 was observed on Aug 9, 2002 (Figure 2). This

moderate active region produced several C-class flares during the passage across the solar

disk. During the time period analyzed here, this active region produced no flares, as well as

several hours before and after.

During the MDI observations, both active region were located near the center of the

solar disk. Therefore the measured line-of-sight component of the magnetic field very closely

represents a component Bz, normal to the solar surface. For each active region, we used

a sequence of 248 magnetograms obtained between 06:26 UT and 11:00 UT in the case of

NOAA 9077 and between 11:00 UT and 15:22 UT in the case of NOAA 0061. We studied

an area 145 × 145 arc sec (250 × 250 pixels, Figure 1) for AR 9077 and an area 380 × 200

pixels for AR 0061 (Figure 2).
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The scale of the MDI magnetograms is 0.58 arcsec which provides a spatial resolution

of approximately 1.2 arcsec. We applied a 3-pixel running mean procedure in the horizontal

and vertical directions to each magnetogram before identifying concentrations.
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Fig. 1.— A high-resolution SOHO/MDI magnetogram of active region NOAA 9077 obtained

on July 14, 2000 at 06:26 UT. The size of the magnetogram is 145×145 arc sec. The intensity

of the image is scaled within a range of ± 900 G. The white box encloses an arbitrary area,

enlarged in Figure 3, which we used to explain our code. North is to the top and west is to

the right.
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Fig. 2.— A high-resolution SOHO/MDI magnetogram of active region NOAA 0061 obtained

on Aug 9, 2002 at 11:00 UT. The size of the magnetogram is 220×116 arc sec. The intensity

of the image is scaled within a range of ± 900 G. North is to the top and west is to the right.
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3. Specification of a threshold in the magnetograms

To determine the magnetic concentrations on a magnetogram, one of the most

important, and most uncertain, question is the choice of a threshold to determine the

boundary of the concentrations. We assume that if the absolute value of Bz in a given pixel

exceeds the threshold, p, then the pixel belongs to a flux concentration.

We selected four values for the threshold: 25, 50, 75 and 100 G. Our estimate of the

noise in a quiet area of a magnetogram showed that the r.m.s. corresponds approximately

to 17 G, in a good agreements with the detection limit for the magnetic flux density from

the MDI high resolution data reported by Schrijver et al. (1997b). Thus, a threshold of 50

G corresponds approximately to the 3σ level of the noise. We consider this threshold, as

well as larger and smaller values in order to assess the affect of its choice.

Our selection of the threshold values agrees with a solution of the same problem in

previous studies. Balke et al.(1993) used data obtained with the Vacuum Tower Telescope

of the Swedish Solar Observatory on La Palma, to calculate the fractal dimension of

the magnetograms. The noise level was estimated to be 180 G, and the authors chose a

threshold higher than 200 G. Janßen et al. (2003) specified a threshold of 50 G as the

detection limit for determination of magnetic flux densities by using the Vacuum Tower

Telescope (Tenerife) data. Meunier (1999) used a set of the threshold values ranging from

40 to 200 G to study the fractal dimensions of the magnetograms from MDI (full disk and

high resolution) data. Schrijver et al. (1997b) chose a threshold of 50 G to calculate the

distribution of magnetic flux concentrations in the plage area by using the SOHO/MDI high

resolution (HR) magnetograms. The threshold value about 45 G was chosen by Schrijver et

al. (1997a) to analyze the photospheric quiet network magnetic flux by using the MDI/HR

data.

4. The routine to select magnetic flux concentrations in a map

We assumed that a pixel belongs to a magnetic flux concentration when the absolute

value of the magnetic field contained therein exceeds the threshold, i.e. |Bz| > p. Thus, we

did not separate magnetic polarities and study only the absolute values of the magnetic

flux content in concentrations (unsigned flux content).

We determined the local peak of a concentration as a pixel where both, d|Bz|/dx

and d|Bz|/dy, change their sign from plus to minus (here x and y are the coordinates on

the magnetogram). Each peak in a magnetogram was labeled. The positions of the local

peaks are indicated by white diamonds in Figure 3. The background in the figures is an
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enlarged arbitrary area marked by the box in Figure 1. Our next step was to outline the

flux concentrations and to calculate their flux content.

In the case when the unsigned flux density of a given pixel exceeds the threshold,

our code determines to which peak a given pixel belongs by moving in a direction of the

maximum gradient on the map of |Bz|. When we encounter a pixel labeled as a peak, we

summed the flux and the area of the current pixel to the total flux and total area of a given

flux concentration. Note, that this routine is analogous to that proposed by Hagenaar et al.

(1997) to calculate the size of elements of the chromospheric network.

The result of the application of the code to the arbitrary fragment of a magnetogram

of 40 × 40 pixels is shown in Figure 3. Although the threshold level was highest in this

example (100 G), the flux concentrations are packed very close to each other (side by side)

while the dividing lines between the concentrations run along ”valleys”.



– 9 –

Fig. 3.— A map of the absolute value of the magnetic field, Bz, for the area enclosed by

the box in Figure 1. The image is scaled in the range of values 0 − 1200 G . The white

diamonds mark the position of the peaks of flux concentrations. The white lines outline the

boundaries between the flux concentrations.
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5. Calculations of distribution functions of magnetic flux concentrations

We performed a statistical analysis of the magnetic flux concentrations in two active

regions for each level of the threshold p = 25, 50, 75, 100 G. In each magnetogram we

determined approximately 600-800 concentrations, depending on the threshold value. To

calculate a histogram of the magnetic flux, Φ, we have to specify a flux range where we want

to obtain the histogram and the number of bins. For the great majority of the concentrations

(for both active regions) the absolute value of the magnetic flux did not exceed 8 × 1020

Mx. We accepted this value as the upper limit of the flux range for the histogram. We

then chose the number of bins equal to n = 3000, 2500, 2000, 1600 for the threshold values

p = 25, 50, 75, 100 G, respectively, so that the total number of concentrations in 248

magnetograms, N , divided by the number of bins, n, was approximately the same for

different thresholds. For each magnetogram of a given active region, we calculated the

histogram of the magnetic flux content in the flux concentrations. After normalizing each

histogram for the total number of concentrations in the magnetogram, we averaged these

normalized histograms over the total number of magnetograms, thus obtaining the averaged

probability distribution function, PDF(Φ). For the active region 9077, the PDF from 248

magnetograms is shown by thick gray line in the top panels in Figures 5-7.

To apply an analytical approximation to the observed distribution function, one has to

determine the lower value of the magnetic flux, Φcut, below which the calculated values of

flux may be significantly affected by influence of noise, threshold, resolution, etc. Figure

4 shows the magnetic flux content, Φ, versus the mean magnetic flux density, 〈|Bz|〉, in

the flux concentrations of an arbitrary magnetogram of active region 9077 calculated for

the threshold of 50 G. A sharp lower edge in the distribution of data points suggests a

lower cut-off in 〈|Bz|〉 curving upward from approximately 50 G. At fluxes Φ < 1019 Mx,

data points are tightly clustered against this artificial limit, suggesting that the choice of

threshold has eliminated or compromised some data. The situation is the same for the

second active region (NOAA 0061) and for other thresholds. Thus, we chose Φcut = 1019

Mx as flux cut-off above which we believe our sample is reasonably complete.

For an arbitrary magnetogram of each active region, we calculated the cumulative

distribution function (CDF) for flux values Φ > Φcut. The function CDF (Φ) giving the

fraction of all concentrations with flux greater than Φ, does not require a bin size be defined.

The result for active region 9077 is shown in the bottom panels of Figures 5-7. The dark

curve on this plot is the CDF whose corresponding PDF is the fit to the average of all 248

PDFs.
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Fig. 4.— Averaged (over the area) magnetic field density, 〈|Bz|〉, versus the magnetic flux

content, Φ, for the magnetic flux concentrations from the magnetogram of AR NOAA 9077

obtained at 08:12 UT on July 14, 2000. The threshold is 50 G. The vertical dotted segment

corresponds to Φ = Φcut = 1019 Mx, i.e. the accepted value of the flux cutoff, below which

the diagram is artificially distorted. The linear best fit (the slope of 0.386 and the correlation

coefficient of 0.606) over the range Φ > Φcut is marked by the solid line.



– 12 –

Fig. 5.— Top - Observed probability distribution function (PDF) of the magnetic flux

in flux concentrations of active region NOAA 9077 (the thick gray line) determined for the

threshold of 50 G. The PDF is calculated as the average from individual PDFs for each of 248

magnetograms. The thin black curve marks the log-normal function with parameters m and

s calculated as a best fit over the flux range Φ > 1019 Mx. Bottom - Observed cumulative

distribution function (CDF, the thick gray line) calculated in the flux range Φ > 1019 Mx

from the magnetogram of active region NOAA 9077 obtained at 08:12 UT on July 14, 2000.

The thin black curve marks the log-normal function, LN(m, s), with parameters m = 2.20

and s = 1.49, as they were obtained from the PDF. The parameters of Kolmogorov-Smirnov

test (d and significance, sig) between LN(m, s) and observed CDF, are noted.
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Fig. 6.— Exponential approximation to the observed distribution functions shown in Fig.

5. The parameters C1 and β, in accordance with eq.(4), are shown. The thin black curves

in both panels show the exponential function with C1 = 0.0135 and β = 0.0572, calculated

as a best fit to the PDF over the flux range Φ > 1019 Mx. Other notations are the same as

in Figure 5. Note the very low level of significance of Kolmogorov-Smirnov test between the

exponential fit and the observed CDF.
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Fig. 7.— Power law approximation to the observed distribution functions shown in Fig. 5.

The parameters C2 and α, in accordance with eq.(5), are shown. The thin black curves in

both panels show the power law function with C2 = 0.275 and β = −1.45, calculated as a

best fit to the PDF over the flux range Φ > 1019 Mx. Other notations are the same as in

Figure 5. The level of significance, sig, of Kolmogorov-Smirnov test between the power law

fit and the observed CDF, is extremely low.
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6. Approximation for the observed distributions

To quantitatively analyze the obtained distributions, we attempted to fit the PDF to

three different distributions: log-normal, exponential and power law.

In the first possibility, a log-normal distribution (Aitchison & Brown 1957, Romeo et

al, 2003), the logarithm of the magnetic flux is normally distributed. This makes the PDF

of Φ

PDF (Φ) =
1

Φs(2π)
1/2

exp



−
1

2

(

ln(Φ) − m

s

)2


 , (1)

for Φ > 0. The function’s two parameters m and s are the mean and standard deviation of

ln(Φ). The expectation value, µ, and the variance, σ2, of log-normally distributed flux are

defined in terms of these parameters

µ = exp

(

2m + s2

2

)

, (2)

σ2 = exp(2m + 2s2) − exp(2m + s2). (3)

The mean flux, µ, exceeds the median flux, em, by a factor es2/2, which can be far greater

than unity for large values of s. In the opposite limit, s � 1, the log-normal distribution

approaches a Gaussian (normal) distribution and the mean approaches the median.

The average PDF was fit to expression (1) by performing a standard, unweighted

least-squares Gaussian fit to the function Φ ·PDF (Φ) versus ln(Φ). The mean and standard

deviation of this fit yield the parameters m and s. Values for each active region for different

threshold values are listed in Table 1. A typical example of the log-normal approximation

in the range Φ > Φcut is shown in Figure 5.

The second possibility, an exponential distribution, corresponds to the PDF

PDF (Φ) = C1 exp(−βΦ), (4)

where C1 = βeβΦcut when using the range Φ > Φcut. We calculate β as the negative slope

when ln(PDF ) is fit, by unweighted least-squares, to a linear function of Φ. Our data for

AR NOAA 9077 gave the value β ≈ 0.036 × 10−18 Mx−1 which ln(Φ) was fit over the range

(20 − 110) × 1018. This agrees well with the value found by Schrijver et al. (1997b) for

plage area inside an active region over the same flux range (see Figure 2 in Schrijver et al.

1997b). The results of the exponential approximation are shown in Table 2 and in Figure 6.

The final possibility, a power law distribution, is given by the PDF

PDF (Φ) = C2Φ
−α. (5)
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In an unweighted least-squares fit of ln(PDF) to a linear function of ln(Φ) the slope gives

−α. Values found from fits to each magnetogram under each of the thresholds is collected

in Table 3. An example of the power law fit for the PDF of AR 9077 is shown in Figure 7.

The quality of each fit is quantified using the Kolmogorov-Smirnov (K-S) test. The

observed CDF (shown by the thick gray line on the bottom panels of Figs. 5 − 7) is

computed from a single arbitrary magnetogram from the active region. The model CDF

(thin black line) uses parameters found by fitting the average PDF of the same active region.

The K-S statistic d, the maximum absolute deviation between the model and the observed

CDF, quantifies the likelihood that the data was drawn from the model distribution (Press

et al. 1986). The “significance” is the probability of obtaining a greater value of d if data

were randomly drawn from the model distribution. When the significance is smaller than

0.01, for example, we may rule out the proposed model distribution with 99% confidence.

The K-S statistic and significance are listed in columns 4 and 5 of Tables 1,2 and 3 for the

three distributions.

The K-S test eliminates, with very high confidence, all distributions except the

log-normal. The log-normal distribution is consistent with CDFs from both active regions

at every threshold value. It is qualitatively evident from the bottom panels of Figs. 6 and

7 that exponential and power law fits yield poor approximations to the CDFs of a single

magnetogram. On the other hand, the log-normal function (Fig. 5) appears to fit the CDF

extremely well. We emphasize that the same flux range, Φ > 1019 Mx, was used for each

type of distribution in fitting and computing the K-S statistic.

The results above suggest that the magnetic flux in photospheric concentrations is

log-normally distributed, at least in the two active regions analyzed. It is noteworthy that

the values of the parameters m and s do not depend significantly on the choice of threshold

p. Nor do they depend on the choice of flux cut-off: when we lowered the cutoff value, Φcut,

from 1019 Mx to 1018 Mx, the values of m and s changed no more than by 5 − 6%, while

the parameters of the exponential and power law fits changed drastically.

Constructing from Table 1 the threshold-averaged parameters m and s gives direct

insight into the structural differences of the two active regions. Average values for active

region 9077 are m̄ = 2.244 and s̄ = 1.478, which gives us (by eqs. 2 and 3) the expectation

and standard deviation of the magnetic flux µ = 28.1 × 1018 Mx and σ = 79.0 × 1018 Mx.

For this case, s̄ = 1.478, the distribution contains large enough tail so that the mean value

exceeds the median, em̄ = 9.4 × 1018 Mx by a factor of three. Active region, NOAA 0061,

has averaged values m̄ = 2.705 and s̄ = 0.966, corresponding to µ = 23.8 × 1018 Mx and

σ = 29.6 × 1018 Mx. This is less dominated by its tail and the mean value is only 60%

larger than the median.
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7. Conclusions and discussion

We have presented the results of fitting the probability distribution function, PDF(Φ),

of magnetic flux concentrations of two active regions (NOAA 9077 and AR NOAA 0061).

We used a set of 248 high resolution SOHO/MDI magnetograms for each active region.

The analysis was performed with 4 different threshold values of magnetic flux density

(25, 50, 75, 100 G). We fit the averaged PDF, over the range Φ > 1019 Mx, to three different

functional forms in turn: log-normal, exponential and power law.

The Kolmogorov-Smirnov test supports the conclusion that only the log-normal

distribution is consistent with any of the observed data. Log-normal distributions are

consistent with each data set, however, the two active regions are fit by distributions with

different parameters.

What can one learn from the distribution of an observed random variable? Some

phenomena present a well defined average behavior with fluctuations around the average

values. Consider the common case of random variable arising from sum of a large number

of independent random variables, each of whose fluctuations are small. This variable will

exhibit relatively small fluctuations about its mean, and its distribution function will be a

narrow Gaussian.

This scenario may be contrasted to a case where the component variables have

significant fluctuations. In this case the sum will exhibit large fluctuations. The variable

can be said to possess intermittent character, with concentration into small-scale features

of high intensity surrounded by extended areas of much lower fluctuations. In this case,

the fluctuations are described by a broad distribution function with a slowly diminishing

tail, e.g. the log-normal or/and the power law distributions. Intermittent structures arise

invariably in the evolution of dynamic systems where dissipative processes may not be

neglected.

A natural process for generating a log-normally distributed variable is as a product,

rather than a sum, of a large number of independent random variables: u =
∏

i fi, In

this case ln(u) =
∑

i ln(fi) is the sum of random variables so it will tend to be normally

distributed. This is the case when the measured variable arises through the fragmentation,

or a multiplicative random cascade (see, e.g., Frisch 1995), when some quantity is to be

subjected to a large number of random, independent subdivisions.

In the solar photosphere and convective zone, two essential processes determine the

interaction between turbulent plasma flows and magnetic flux tubes. On the one hand,

a magnetic flux element tends to be advected by the turbulent diffusion. On the other

hand, turbulent motions tend to sweep the field lines together at convergence points of
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the flow. Fragmentation and concentration are in dynamic equilibrium in homogeneous

stationary turbulence. Petrovay & Moreno-Insertis (1997) showed that in inhomogeneous

and/or non-stationary situations, turbulent diffusion dominates the concentration causing

a turbulent erosion of magnetic flux tubes. The idea of the gradual disintegration of

sunspots due to erosion of penumbral boundaries was advanced by Simon & Leighton

(1964). Later, Bogdan et al. (1988), on the basis of the observed log-normal distributions

of umbral areas, argued that fragmentation of the magnetic elements may be an essential

process in the formation of observed magnetic structures. White-light movies of the

solar photosphere allow one to observe the erosion of a sunspot (Yurchyshyn & Wang

2001; www.bbso.njit.edu/∼vayur/flow/I
−
981105.mpg). The log-normal distribution of the

flux content in magnetic flux elements of an active region suggests that the process of

fragmentation dominates the process of flux concentration.

Assuming that the log-normality of concentration flux results from repeated, random

fragmentation we may attribute meaning to the distribution parameter. The variance of

ln(Φ), s2, is proportional to the number of independent fragmentations produced a given

concentration from a single initial concentration (Monin & Yaglom 1975, Ch.25). If the basic

fragmentation process is similar in all active regions then the value of s2 is proportional to

the time over which fragmentation has occurred. Since the value of s2 for AR 9077 is larger

than that of AR 0061, by a factor of 2.3, 9077 may be older than 0061 by approximately

that factor. Alternatively, AR 9077 may have undergone more vigorous fragmentation over

a comparable lifetime. This explanation may also explain the very different level of their

flaring activity (see Section 2). Note, that a very intense fragmentation of sunspots during

several days before the Bastille day flare in AR 9077 were reported by Liu & Zhang (2001).

A log-normal distribution with a significant value of s2 will have a significant tail.

This means that the random variable will take on very large values far more often than

would a normally distributed variable. These occasional values are large enough that they

contribute significantly to the mean value µ, making it far greater than the median. An

inverse interpretation of this same fact is that the random variable takes on small values

(below the mean) far more often than large ones.

The tendency for values to be well below the mean has an interesting implication

for the theory of a viscoelastic back-reaction by fibril fields (Longcope et al. 2003). The

stronger coupling of smaller flux tubes to the turbulence gives them stronger fields and

therefore smaller volumes. Accounting for this Longcope et al. find the volume-weighted

distribution function to be F (Φ) ∼ Φ5/4 f(Φ) for standard PDFs f(Φ), such as that given in

expression (3). The ensemble of tubes presents an effective viscosity to any slow, large-scale

flow. The coefficient of shear-viscosity scales as a product of volume-weighted averages of
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inverse powers of Φ, in which the most negative power is Φ−7/8. A log-normal distribution

has a greater preponderance of small fluxes than an exponential distribution of the same

mean. This means that an ensemble of log-normally-distributed flux tubes will provide

viscous back-reaction larger than predictions based on exponential distributions.
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Table 1: Parameters of the log-normal fit to the observed distributions

Threshold, G m s d sig

Active Region NOAA 9077

25 2.113 1.510 0.0389 0.623

50 2.199 1.491 0.0354 0.758

75 2.285 1.472 0.0384 0.681

100 2.378 1.441 0.0344 0.826

Active Region NOAA 0061

25 2.690 0.969 0.0445 0.455

50 2.715 0.961 0.0342 0.794

75 2.711 0.965 0.0306 0.906

100 2.703 0.970 0.0427 0.600

Table 2: Parameters of the exponential fit to the observed distributions

Threshold, G C1 β d sig

Active Region NOAA 9077

25 0.0102 0.0593 0.163 4.71e-09

50 0.0135 0.0572 0.161 1.60e-08

75 0.0169 0.0549 0.153 1.50e-07

100 0.0204 0.0523 0.153 3.60e-07

Active Region NOAA 0061

25 0.0116 0.0611 0.1130 1.56e-04

50 0.0156 0.0596 0.0953 2.87e-03

75 0.0206 0.0592 0.0966 3.35e-03

100 0.0268 0.0589 0.1057 1.51e-03

Table 3: Parameters of the power law fit to the observed distributions

Threshold, G C2 α d sig

Active Region NOAA 9077

25 0.210 -1.465 0.260 1.65e-22

50 0.275 -1.448 0.270 3.58e-23

75 0.344 -1.432 0.283 1.25e-24

100 0.403 -1.403 0.303 5.63e-27

Active Region NOAA 0061

25 0.262 -1.515 0.275 1.03e-24

50 0.348 -1.500 0.288 2.58e-26

75 0.462 -1.499 0.290 1.63e-25

100 0.592 -1.491 0.295 9.07e-25


