

An Overview of Big Bear Solar Observatory

Wenda Cao

- Big Bear Solar Observatory (BBSO) of NJIT is a remote facility in California.
- BBSO now operates one of the highest resolution solar telescope – the 1.6-meter off-axis Goode Solar Telescope (GST).
- The dome sits at the end of a 1,000-foot causeway on Big Bear Lake's north shore at 6,750-foot elevation.
- The surrounding waters of Big Bear Lake reduce ground level convection and provide superb conditions for solar observing.
- GST opens its observing time and data to the Solar Physics and Space Science
- Communities.

OREGON

NEVADA

Turbulence in Earth's Atmosphere

- Turbulence in earth's atmosphere makes astronomical targets twinkle.
- Turbulence changes rapidly with time.
- Temperature fluctuations in small patches of air cause changes in index of refraction.
- Atmospheric perturbations cause distorted wavefronts.
- When light rays reach telescope, they are no longer parallel, hence they can't be focused to a point.

- * <u>"Coherence Length"</u> from all atmosphere contribution and can be seen as an average turbulence cell size.
- r₀ is diameter of the circular pupil for which the diffraction limited image and the seeing limited image have the same angular resolution.
- Any telescope with diameter $D > r_0$ has no better spatial resolution than a telescope for which $D = r_0$

Seeing Characteristic r_o at Big Bear

- Big Bear Lake reduce ground level convection, and predominant winds bring smooth air flows across the flat surface of the lake.
- Seeing character at Big Bear differs markedly from the high altitude, volcanic island sites measured in the DKIST site survey. The median r₀ for BBSO is shown in black (Hill et al. 2004).
- Observations using AO will be viable for extended periods during a typical day.
- ↔ Median $r_0 \simeq 6$ cm @ 500 nm, and wind speed $\simeq 4-6$ m/s.

BBSO – History

- BBSO was constructed by Caltech in 1960s.
- Its 26-inch (65 cm) telescope advanced our understanding to our star in high resolution.
- In 1997, the first BBSO director, Prof. Zirin retired. Caltech decided to direct their resources to their nighttime astronomy program.
- New Jersey Institute of Technology (NJIT), in Newark, NJ took over the observatory operation.
- Prof. Phil Goode became the second director of BBSO.

- GST presentation to NSF December 2002. Construction grants awarded.
- Fabrication of the primary mirror began 2003.
- Designs continued into 2005.
- DFM contracted for telescope structure 2005
- Old dome removed October <u>November 2005</u>.
- New dome built in December 2005 January 2006.
- Dome drives installed March June 2006.
- Mirror testing in last half of 2006, some problems with test procedures.
- Figuring and testing of mirror continued to June 2008.
- Old telescope removed in <u>February 2007</u>
- New pier built in March-April 2007.
- Work deck (new observing floor) built <u>April 2007</u>.
- Dome drive rebuilt in <u>2008</u>.
- Telescope structure built at DFM Engineering in January 2007 September 2008.
- Final telescope assembly began in <u>September 29, 2008</u>
- First light in January 19, 2009.
- Commissioning started in 2009 for one year

NST Construction Milestones

1.6 m Off-axis NST/GST

- The GST is an off-axis section of a 5.3meter, f/0.73 Gregorian telescope. The result is an f/2.4, 1.7-meter system.
- The design offers an unobstructed pupil allowing superior adaptive optics (AO) performance and low scattered light.
- The prime focus, where most of the solar radiation must be absorbed, is accessible without obstructing the light path.
- A small (3.5 mm) field stop at prime focus limits the radiation loads transmitted to the downstream optics.

GST and its Scientific Instruments

- Adaptive Optics System (AO: AO-308, MCAO)
 SPIE.9148.100, SPIE.9148.193, SPIE.11448.1144924
- Visible Imaging Spectrometer (VIS)
 - SPIE.9147.15, AN.331.636
- Near Infrared Imaging Spectro-polarimeter (NIRIS) – ASPC.463.291, SPIE.9147.127
- Fast Imaging Solar Spectrograph (FISS)
 - Solar Phys.288.1
- Broad-band Filter Imager (BFI) SPIE.7735.77355v
- Cryogenic Infrared Spectrograph (CYRA)
 - SPIE.11447.11447AG, SPIE.9147.129
- NASA Mid-Infrared Imager (MIRI)

Adaptive Optics (AO) Principle

- AO system uses a computer to control deformable mirror to correct for distortions caused by observing through the Earth's atmosphere.
- Wavefront sensor: measure details of blurring from the target you want to observe.
- Control system: calculate the shape to apply to deformable mirror to correct blurring.
- Deformable mirror: light from observing target is reflected from DM and distortions are removed.

GST AO and MCAO

- 1st Generation AO-76: Strehl ratio: 0.7 in the NIR under median BBSO seeing.
- 2nd Generation AO-308: Acquire diffraction limited imaging over the telescope's full range of operation.
- String Generation GLAO & MCAO: Expand field of view of diffraction limited observations to ~ 1' in the visible.
- Limb-AO for observing solar prominences.
- WFS Profiler to measure seeing as a function of height in a real time.
- Successful collaboration between BBSO/NJIT, NSO and KIS.

2nd Generation AO: AO-308

- AO-308 is operational, AO-308 is a collaboration between BBSO, NSO and KIS.
- Shack Hartmann WFS with 308 sub-apertures (AO-308):
 20 sub-apertures across the GST primary mirror.
- Xinetics Deformable Mirror with 357 actuators and 5 mm spacing.
- Adimec camera with a frame rate of 1700 Hz for 400 by 400 pixels sub-array with a large full well.
- Using KAOS program with a high-performance computer.
- Closed-loop Bandwidth: 120 Hz.
- Adjustable number of corrected modes up to 285.
- Acquire diffraction limited imaging over the telescope's full range of operation.

3rd Generation AO: MCAO

- Multi-Conjugate AO (MCAO) is a collaboration with BBSO, NSO and KIS.
- MD SH WFS with 208 sub-apertures and 9 guide regions.
- Three DMs with 357 actuators conjugated to pupil (1km), 3 km (2km), and 8 km (3km).
- Multi-CPU parallel computation.
- MichroTron high speed camera.
- Closed-loop Bandwidth: 120 Hz.
- One-click switch between MCAO, GLAO and CAO depending seeing conditions.
- Expand field of view of diffraction limited observations to ~ 1' in the visible.

Limb AO

- Limb AO is a modified version of GST AO-308
 Mk II for the prominence observations.
- Correlating Shack-Hartmann WFS.
- Sub-aperture size:
- Number of sub-apertures: pupil).

across

- Maximum frame rate:
- WFS Wavelength:
- WFS field of view:

01:58

 Successful collaboration between BBSO/NJIT, NSO and KIS, serving as the pathfinder for DKIST & EST.

GST and its Scientific Instruments

- Adaptive Optics System (AO: AO-308, MCAO)
 SPIE.9148.100, SPIE.9148.193, SPIE.11448.1144924
- Visible Imaging Spectrometer (VIS)
 - SPIE.9147.15, AN.331.636
- Near Infrared Imaging Spectro-polarimeter (NIRIS) – ASPC.463.291, SPIE.9147.127
- Fast Imaging Solar Spectrograph (FISS)
 - Solar Phys.288.1
- Broad-band Filter Imager (BFI) SPIE.7735.77355v
- Cryogenic Infrared Spectrograph (CYRA)
 - SPIE.11447.11447AG, SPIE.9147.129
- NASA Mid-Infrared Imager (MIRI)

Imaging Spectroscopy

- Imaging spectroscopy can be be defined as acquisition of images in hundreds of contiguous, registered, spectral band.
- Imaging spectroscopy generates a data cube with 3 dimensions: x, y, and λ.
- Unfortunately, instruments can only observe
 2 simultaneously.
- Spectrograph observers x, λ at once and slit scan across y for imaging spectroscopy.
- Filter observers x, y and image scan over λ
 for imaging spectroscopy.
- Imaging spectro-polarimetry.

NSP

Broad-band Filter Imager - BFI

- Highest possible spatial and temporal resolution photospheric observations.
- Reference images for alignment with space instruments
- ✤ Typical exposure: 0.8 1.5 ms
- ✤ Typical burst cadence: 10 15 s.
- Available channels:

	Central	Height	Filter	Field of	Image	Minimum
	Wavelength	above $\tau_{500}{=}1$	Bandpass	View	Scale	Cadence
G-band	430.5 nm	$\sim 50 \ \mathrm{km}$	5 Å	55"	0.027"/pix	7-10 secs
TiO	705.7 nm	$\sim 150 \; km$	10 Å	70"	0.034"/pix	7-10 secs

- ✤ Each burst is analyzed on the fly with 70 best contrast frames out of 100 images.
- ✤ All BFI bursts are processed with speckle interferometry to achieve the diffraction-limit.

Visible Imaging Spectrometer – VIS

- High spatial resolution spectrosc
 the solar chromosphere with Ha
 - Narrow band tunable filter base
 single Fabry-Pérot etalon (D = 70 ___
 - ✤ Band pass: 5.8 8.2 pm
 - ✤ Wavelength coverage: 550 700
 - ✤ Field of view (FOV): 75" by 64".
 - Cadence ranges from 0.8 s (one to 25 s (13 positions).

Wang, Cao, Liu, et al., Nature Communications, 6, 7008, 2015

Upgrading Visible Imaging Spectrometer – VIS-II

- Replace the VIS with a dual FPIs system, each with a 100 mm aperture to cover a broader wavelength range in the visible and have a larger FOV and scanning range.
- ✤ Wavelength coverage: 480 860 nm.
 - Ha 656.3 nm chromosphere dynamics
 - He I 587.6 nm D3 flares
 - Fe I 617.3 nm photospheric magnetic fields
 - Ca II 854.2 nm chromospheric magnetic fields
 - 543. 5 nm or 769.9 nm
- ✤ FOV TBD: 85" by 85".
- ✤ Scanning range > 0.15 nm @ Ha line
- Spatial resolution: < 0.1" with AO and speckle reconstruction processing.

Near Infrared Imaging Spectro-polarimeter - NIRIS

- High quality and sensitivity vector magnetic fields measurement.
- Imaging spectro-polarimeter based on dual Fabry-Perot interferometer.
- ♦ Wavelength coverage: 1.0 1.75 um (Fe I 1565 nm and He I 1083 nm).
- ✤ Field of view: 85" round.
- Cadence: ~40 s for a 40-positions sampling spectro-polarimetry.
- Polarimetry accuracy: 10 Gauss for longitudinal magnetic signals.
- Offer Stokes Inversion per request.
- Apply deep learning to Stokes Inversion.

NIRIS Data Processing

- ✤ Dark/Flat Fielding.
- Align frames with features.
- Align dual beams.
- Subtract dual beams w/ de-stretch (registration).
- Combine 16 frames to create initial Stokes profiles.
- Correct for phase offset between modulator & detector.
- ✤ Calibrate instrumental crosstalk.
- Offer ME Stokes Inversion per request.
- Apply deep learning to Stokes Inversion.

 $(I' Q' U' V')^{T} = M (I Q U V)^{T}$ $M = M_{n} M_{n-1} M_{n-2} \dots M_{3} T$ $(I Q U V)^{T} = M^{-1} (I' Q' U' V')^{T}$ $M (dec,ha) = M_{rest} R(\varphi_{3},ha) M_{4} R(\varphi_{2},dec) M_{3} R(\varphi_{1})$ $M_{rest} = M [R(\varphi_{3},ha) M_{4} R(\varphi_{2},dec) M_{3} R(\varphi_{1})]^{-1} = constant$

NIRIS, Hinode-SP and HMI

Fast Imaging Solar Spectrograph - FISS

Solar Physics, vol. 288, 2013. "Initial Results from FISS"

- High resolution imaging spectroscopy in solar atmosphere.
- Echelle grating with order-selecting filters in quasi-Littrow configuration.
- Slit-scan simultaneous imaging at dualband spectra with two CCD cameras.
- Default setting: Ha & Ca II 854.2 nm.
- Field of view: 60" by 40".
- Spectral resolving power: > 1.4×10^5 .
- Cadence: < 60 s for a 60" by 40" scan.

Upgrading Fast Imaging Solar Spectrograph - FISSP

- ✤ Upgrade FISS to be a spectropolarimeter FISSP.
- A slit assembly with an integrated context imager.
- A large-format spectrum camera for dualbeam polarimetry.
- An FLC-based polarimetric modulator and a polarimetric calibration unit.
- This setup is specifically designed to make use of an image restoration scheme developed for spectrograph data (van Noort 2017).
- ✤ FISSP can simultaneously measure dozens of unique spectral lines in a wide spectral range.

WHISPER

- US NSF-MRI: Development of Wide-band Highresolution Imaging Spectro-Polarimetric Explorer (WHISPER) for GST at BBSO.
- ✤ Joint project with BBSO, TSL MPS, SNU, KASI.
- ✤ 3-year project with 1 M\$ starting on 9/1/24.
- ✤ WHISPER spectral range: 516-526 nm.
- WHISPER employs an image reconstruction scheme developed for slit spectrographs to undo the effect of the residual seeing, optical aberrations and modulation transfer.
- WHISPER allows us to obtain diffraction-limited spectropolarimetry of 0".067 at 520 nm.

Cryogenic IR Spectrograph - CYRA

- Fully cryogenic IR solar spectrograph operating at 77 K to minimize background thermal emission
- \checkmark Spectral range 1.0 to 5.0 μm with a FOV of 75"
- ✤ Spectral resolving power > 10⁵
- High spatial resolution, high cadence spectrometry and polarimetry
- ✤ Image rotation compensator and image scanner
- Interest of IR spectral lines

Tal	ble 1: Spectr	ograph Cov	erage of CY	RA for Its Current Conj	figuration
Region	Species	λ [nm]	g eff	Mag Sensitivity λg _{eff} [nm]	Note
Photosphere	Fe I	1565	3	4695	
	Ti I	2231	2.5	5578	Sunspot only
	Fe I	4063.7	1.25	5080	
	Si I	4236.5	1.625	6732	
			or 2.25	or 9321	
Chromosphere	Ca I	3697.4	1.1	4067	
	Mg I	3681.6	1.17	4307	
	Fe I	4132	n/a	n/a	Spectroscopic
	СО	4666	n/a	n/a	Spectroscopic
Corona	Si X	3934	1.5	5901	

Develop wavefront sensor and context imager

- MIRI is a broad-band filter imager operating in Mid-IR, contributed by NASA/GSFC.
- QWIP is a two-color detector with 320 × 256 pixels, offering 20% of maximum response of 4.2-6.2 μm for 5 μm channel and 7.0-9.3 μm for the 8 μm channel.
- Typical exposure 10 ms and frame rate 15 fr/s.
- MIRI/GST provides diffraction limited imaging of 0."67 at 5.2 μm and 1."06 at 8.2 μm, simultaneously.
- MIRI fills observational gap in Mid-IR spectral region of flare events, help us to understand the energy flow in the flare process.

BBSO_MIRI_B_20240222_222134

A X1.8 flare on 02/22/24 captured with MIRI 5 μm & 8 μm

GST Data Pipeline and Mining

- VIS Spectroscopy and BFI Photometry Data:
 - Dark and flat fielding
 - Speckle reconstruction (Wöger, F.; von der Lühe, O.; Reardon, K., 2008)
- NIRIS Spectro-polarimetry Data:
 - Dark and flat fielding, polarization signals extraction
 - Telescope polarization calibration
 - Stokes inversion to offer physical parameter (B, v, T, azi) maps
- FISS spectroscopy Data:
 - Dark and flat fielding, correction of curvature, dust removal
 - Spectra calibration to generate temperature and velocity maps
- GST Data Mining:
 - Deep learning for NIRIS Stokes inversion
 - Scale-invariant feature transform and optical flow methods
 - GST image registrations with NASA space data (HMI, SDO ...)
 - High-precise co-alignment between all GST instruments

Synoptic Program at BBSO

BBSO Supports NASA Missions

- Skylab the First US Space Station NASA
- Spacelab a Reusable Space Laboratory ESA & NASA
- Yohkoh "Solar-A" JAXA & NASA
- SOHO Solar and Heliospheric Observatory ESA & NASA
- TRACE Transition Region and Coronal Explorer NASA
- SDO Solar Dynamics Observatory NASA
- Hinode "Solar-B" JAXA & NASA
- IRIS Interface Region Imaging Spectrograph NASA
- NuSTAR Nuclear Spectroscopic Telescope Array NASA
- RHESSI Reuven Ramaty High Energy Solar Spectroscopic Imager NASA
- Hi-C II High Resolution Coronal Imager Rocket Mission NASA
- CLASP-2 Chromospheric Layer Spectropolarimeter Rocket Mission NASA
- PSP Parker Solar Probe NASA
- SO Solar Orbiter ESA & NASA
- BITSE & CODEX KASI & NASA
- EUVST "Solar-C" JAXA & NASA

GST Time and Data Opening to Community

- BBSO TAC has approved 78 PI-driven observing proposals covering 1,028 observing days in past three years. Test service mode with 30 observing proposals in AY21.
- 56.1% (AY18), 75.0% (AY19), 82.6% (AY20) and 80.0% (AY21) of GST observing time allocated to external users.
- ◆ GST observing proposals deadline on March 31 for premium observing season (Apr. 15 – Oct. 30).

Cli	Click on a "blue/yellow" day to see data; "clear" days - no obs; "gray" days - data are not available; "yellow" - PSP support; Total: 194 "open" days and 183 data days.																														
2020 Jan	01	02	03	04	05	<u>06</u>	07	08	09	10	11	12	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	17	18	19	20	21	22	<u>23</u>	24	25	26	27	<u>28</u>	29	30	31
2020 Feb	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29		
2020 Mar	01	02	03	<u>04</u>	<u>05</u>	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2020 Apr	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
2020 May	01	02	03	04	<u>05</u>	06	07	08	<u>09</u>	<u>10</u>	11	12	<u>13</u>	<u>14</u>	15	<u>16</u>	<u>17</u>	<u>18</u>	19	<u>20</u>	<u>21</u>	22	<u>23</u>	<u>24</u>	<u>25</u>	<u>26</u>	27	<u>28</u>	29	30	31
2020 Jun	01	02	<u>03</u>	<u>04</u>	<u>05</u>	06	<u>07</u>	08	<u>09</u>	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>	21	22	<u>23</u>	<u>24</u>	25	<u>26</u>	<u>27</u>	28	<u>29</u>	<u>30</u>	
2020 Jul	01	02	<u>03</u>	04	<u>05</u>	<u>06</u>	<u>07</u>	08	09	10	11	12	13	14	<u>15</u>	<u>16</u>	17	<u>18</u>	<u>19</u>	<u>20</u>	<u>21</u>	22	<u>23</u>	<u>24</u>	<u>25</u>	<u>26</u>	27	<u>28</u>	<u>29</u>	<u>30</u>	<u>31</u>
2020 Aug	<u>01</u>	02	<u>03</u>	<u>04</u>	<u>05</u>	<u>06</u>	<u>07</u>	<u>08</u>	<u>09</u>	<u>10</u>	<u>11</u>	<u>12</u>	13	<u>14</u>	15	16	17	18	19	<u>20</u>	<u>21</u>	<u>22</u>	<u>23</u>	<u>24</u>	<u>25</u>	<u>26</u>	<u>27</u>	<u>28</u>	<u>29</u>	<u>30</u>	<u>31</u>
2020 Sep	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
2020 Oct	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2020 Nov	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
2020 Dec	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Previous Day. BBSO Archive and Observing Log DATE: 2017/06/27 OBS TIME: 161947 - 224321 UT TARGET: NOAA 12664 INSTRUMENTS:TIO, VIS OBSERVER: cp, ng NOTE:																															
DATE: 2 INSTRU	017/0 MEN	6/27 TS:T	10, 1	/IS				0	BS T BSE	TMI RVE	E: 1 CR: -	6194 cp, n	7 - 2 g	2432	1 U	r		T	ARC	GET: E:	NC	AA 1	266	4							
DATE: 2 INSTRU OBS CO	017/0 MEN MMF	6/27 TS:T	10, V :	/IS					BS T BSE EEIN	TMI RVH IG, I	E: 1 CR: - DAT	6194 cp, n A Q	7 - 2 g UAI	2432 .ITY	:1 U	<u> </u>		1 1	ARC OTI (can	GET: E: mak	NC	AA 1	266 ures	4							
DATE: 2 INSTRU OBS CO NST Data	017/0 MEN MME a Requ	6/27 TS:T NTS	IO, \ : orm	/IS				Ol Ol SH	BS T BSE CEIN	TMI RVF NG, I Moni	E: 10 ER: 0 DAT	6194 cp, n A Q Page	7 - 2 g UAI	2432 .ITY	:1 U'	F		1 N 1	ARC OTI (can Obser	GET: E: 1 mak ver I	: NC te ou	AA 1 It feat	266 ures	4 ;) <u>g Er</u>	TOF						
DATE: 2 INSTRU OBS CO NST Data All IRIS	017/0 MEN MME a Requ Obs fo	6/27 TS:T NTS test F or 201	IO, \ : orm <u>7/06</u>	/IS / <u>27</u>				Ol Ol SE So Jo	BS T BSE CEIN blar N int N	TIMI RVF NG, I Moni	E: 1 ER: 0 DAT tor 1 EIRI	6194 cp, n A Q Page <mark>S Ot</mark>	7 - 2 g UAI psID:	2432 .ITY : <u>362</u>	1 U	Г <u>і102</u>	;	1 N 1 C	ARC OTI (can)bser lelio	GET: E: mak ver I view	e ou Log -	AA 1 It feat	266 ures	4 ;) g_Er	TOF						
DATE: 2 INSTRU OBS CO NST Data All IRIS	017/0 MEN MME a Requ Obs fo	6/27 TS:T NTS test F or 201	IO, \ : orm <u>7/06</u>	/IS / <u>27</u>					BS T BSE CEIN blar N int N	TIMI RVF NG, I Moni IST&	E: 10 ER: 0 DAT tor I	6194 cp, n A Q Page S Ot	7 - 2 g UAI ssID:	2432 .ITY : <u>362</u> IS ha	0250	Г 0102	vatio		Verage	GET: E: mak ver I view	e ou cog - er.or	AA 1 It feat	266 ures	4 ;) <u>g Er</u>	TOF					22	
DATE: 2 INSTRU OBS CO NST Data All IRIS	017/0 MEN MME a Requ Obs fc	6/27 TS:T NTS test F or 201	IO, N : orm 7/06	/IS				O) O) SE So Jo	BS T BSE CEIN blar N int N	rimi RVF NG, 1 Moni IST8	E: 10 ER: 1 DAT tor I	6194 cp, n A Q Page S O t	7 - 2 g UAI osID:	2432 JITY : <u>362</u> IS ha	21 U' -> 0256	C block	; vation		Varage	GET: i mak ver I view	: NC	IAA 1 It feat	266 ures intin	4						222	

- Submit observing proposal: <u>http://www.bbso.njit.edu/cgi-bin/GSTObsForm</u>
- GST data download request: <u>http://www.bbso.njit.edu/~vayur/NST_catalog/</u>
- GST data browse: <u>http://www.bbso.njit.edu/~vayur/gst_logs/</u>

- Instituto de Astrofisica de Canarias IAC, Spain
- Universidad de La Laguna, Department of Astrophysics, Spain
- Seoul National University SNU, Korea
- Korea Astronomy and Space Science Institute KASI, Korea
- Indian Institute of Astrophysics IIA, India
- Indian Institute of Technology IIT BHU, India
- University of Sydney USYD, Australia
- University of Graz IGAM, Austria
- University of Oslo RoCS, Norway
- Observatorire de Paris LESIA, France
- Institut d'Astrophysique Spatiale IAS, France
- Tel Aviv University, Israel
- National Solar Observatory of Japan NAOJ, Japan
- Japan Aerospace Exploration Agency ISAS, Japan
- Nagoya University STEL, Japan
- Nanjing University NJU, China
- Peking University PKU, China
- University of Science and Technology of China USTC, China
- National Astronomical Observatory of China NAOC, China
- University of Warwick Center for Fusion Space and Astrophysics, UK

Northumbria University – NU, UK

New Jersey Institute of Technology – SUPA, Scotland

University of St Andrews – RCSP & ITA, Scotland

High Impact of GST Research

- 250+ peer-reviewed publications from GST observations since 2010, mostly in top journals, like Nature, Science, ApJ, A&A, MNRAS, ApJS, and ApJL, etc.
- Significant discoveries in the fields of quiet Sun, sunspot oscillations, structure of sunspots and pores, Ellerman bombs, small-scale reconnection, chromosphere flows, filaments and prominence, solar flares, corona heating, etc.
- ✤ One Science and six Nature journal papers.
- 80+ PhD Students graduated/working on their thesis with GST data.

https://ui.adsabs.harvard.edu/public-libraries/IBI9h5Y7TXWdf_A4CCKCMA

We gratefully acknowledge the use of data from the Goode Solar Telescope (GST) of the Big Bear Solar Observatory (BBSO). BBSO operation is supported by US NSF AGS-2309939 grant and New Jersey Institute of Technology. GST operation is partly supported by the Korea Astronomy and Space Science Institute and the Seoul National University.