The infrared solar spectrum: diagnostics and methods

Tom Schad

National Solar Observatory / DKIST 2024 BBSO Summer School 1 August 2024

List of Useful References

- 1. Penn, M.J. Infrared Solar Physics. *Living Rev. in Solar Phys.*. 11, (2014), 2
- Harvey, J. and Hall. D., Magnetic Fields Measured with the 10830 °A He i Line", in Solar Magnetic Fields, Proceedings of IAU Symposium 43 held in Paris, France, August 31 – September 4, 1970, (Ed.) Howard, R., IAU Symposia, 43, p. 279, Reidel, Dordrecht.
- Infrared solar physics: proceedings of the 154th Symposium of the International Astronomical Union; held in Tucson; Arizona; U.S.A.; March 2-6; 1992. D. M. Rabin, John T. Jefferies, and C. Lindsey. International Astronomical Union. Symposium no. 154; Kluwer Academic Publishers; Dordrecht
- 4. J. Heidt, Astronomy in the Near-Infrared Observing Strategies and Data Reduction Techniques, Astrophysics and Space Science Library 467, https://doi.org/10.1007/978-3-030-98441-0_1
- 5. A. Rogalski, A. History of Infrared Detectors. *Opto-Electronics Review*. **20**(3), (2012) 279-308.
- 6. Stix. M. The Sun: An Introduction. 2nd Edition, Springer (2002).
- 7. Gray, D.F. The Observation and Analyis of Stellar Photospheres. Cambridge UP (2005).
- 8. Beletic, J.W. et al. Teledyne Imaging Sensors: Infrared imaging technologies for Astronomy & Civil Space. SPIE (2008)
- 9. Teague, J., Schmieder, D. The History of Forward-Looking Infrared (FLIR). DSIAC Publications DSIAC-2021-1342.

Lecture Outline

• Defining the Infrared: A short history

- The Infrared Solar Spectrum
 - Continuum formation and flare emission
 - Atomic lines of the lower atmosphere
 - Molecular species
 - Coronal emission
- Observing at Infrared Wavelengths
 - Advantages and disadvantages
 - Detectors
 - Optics
 - Cryostats
 - Coronagraphs
- Summary and Outlook
 - This afternoon's tutorial: Coronal IR Spectroscopy using DKIST/CryoNIRSP

Wikimedia commons image (CC BY-SA 3.0 license)

Defining "Infrared" – 'infra' is Latin for 'below'

From the perspective of human vision, 'infrared' often refers merely to wavelengths longer than visible red (or ~> 650 nm). This motivates figures like those at left showing infrared starting around ~650 nm.

Yet, its important to understand that "infrared" is application specific. For example, in commercial domain, "IR photography" often refers to ~650 nm to ~900 nm whereas "IR imaging" often refers to thermal temperature mapping (or similar).

Defining "Infrared" and "Radiant Heat"

The History of Infrared Astronomy is directly tied to our ability to measure 'invisible light' from the ground.

William Herschel (1800): visible and 'radiant heat' experiment with blackened thermometers to measure spectral energy distribution of the Sun. Reproduced from J. Heidt, *Astronomy in the Near-Infrared* (2022).

Fizeau and Foucault (1847): Improved observing methods show IR absorption bands on an early wavelength scale.

In 1845 they achieved first photographs of Sun in visible.

Figure 4: The spectrum of the Sun from the violet to the near infrared obtained by Fizeau and Foucault in 1847 with a glass prism. As for Figure 3, the spectrum, which would be expected to peak in the yellow, is in fact strongly displaced towards the infrared due to the variation of dispersion of the prism with wavelength. Fizeau and Foucault observed the infrared absorption bands due to the Earth's atmosphere, but they were not recognized as such by them. The vertical lines in S are the main Fraunhofer lines. The broad infrared bands were already suspected in 1843 by John William Draper (1811–1882) and also by John Herschel, but with no wavelength measurements.³ In S' and S", the bold vertical lines mark the positions of interference fringes obtained using chromatic polarization, which are equidistant in wavelength. For the first time, they allowed the establishment of a wavelength scale in the near infrared.

1845: Kirchhoff and Bunson identified Fraunhofer lines as correlated to heated elemental emission. They also noted O2 molecular absorption features.

J.W. Draper discussed infrared bands around 1847 as well, founding later work by Angstrom and others.

Recall that Max Planck introduced blackbody law in 1901.

Langley (1888) using his invented bolometer device and a rock salt prism measured solar spectrum out to \sim 5 μ m

While bolometers were a major breakthrough (still in use) they did not provide the sensitivity, nor imaging capabilities of **early film based visible astronomy**.

IR astronomy research was not largely adopted until the development of new IR sensing technologies based on semiconductors (select milestones below, see e.g. Rogalski 2012):

1904: J.C. Bose patented the first IR photovoltaic detector
1930: PbS quantum detectors used first by German military for heat-direction finding. 30 km detection of ships. (US had been focused on radar and IR cells for communication)
1940: WW2: US National Defense Research Committee (NRDC) formed.
1941: NRDC asked Northwestern Professor R.J. Cashman to investigate IR cells.
1946: PbS cell figures for wavelength sensitivity (etc.) declassified. 1000x increase!

Cashman PbS Cell

An early Cashman PbS cell, c. 1945. (Photographed by the author at Cashman's North western University Laboratory in Evanston, Illinois)

1947: Kuiper, Wilson, and Cashman used PbS cell at McDonald Observatory to discover CO2 and CH4 bands of Mars and Titan.

1947: McMath, Mohler, Goldberg use Cashman PbS cells for infrared solar spectroscopy at McMath-Hulbert Observatory in Michigan, laying ground-work for IR solar physics later at McMath-Pierce Solar Telescope on Kitt Peak.

1961: U, B, V photometric system extended to include J, H, K bands centered within atmospheric transmission bands (Johnson 1961).

1970: CCDs invented; Silicon arrays for visible use expand fast; IR focal plane arrays (FPAs) follow suit.

What then is "Infrared" for Solar Physics and Astronomy?

100 %

50 %

Atmospheric opacity

The lower wavelength limit is typically defined as either:

- 1. The limit of human eye response: ~700 nm
- 2. The wavelength of the band gap for Silicon.
 - -> Band gap is 1.14 eV or ~1090 nm.

Quirk: DKIST "visible" typically includes wavelengths to at least the Ca II "infrared" triplet near 850 nm.

The upper wavelength limit is similarly fuzzy. Often cutoff is ~ 1mm (overlaps with sub-mm). ~25 μm is upper end of "Mid-IR" (defined by atmospheric windows).

Penn (2014) Living Review in Solar Physics notes the following IR regions:

Name	Wavelength [nm]	$\begin{array}{c} Wavenumber \\ [cm^{-1}] \end{array}$	Frequency [GHz]	Temperature [K]
Near IR Mid-IR Far-IR	$\begin{array}{c} 700-5000\\ 5000-25000\\ 25000-10^6\end{array}$	$\begin{array}{c} 14300-2000\\ 2000-400\\ 400-10\end{array}$	$\begin{array}{c} 428000-60000\\ 60000-12000\\ 12000-300\end{array}$	4100-580 580-120 120-3

In this talk, we will mostly concentrate on 1 to ~10 μ m.

Units and conversions in infrared astronomy

Wavelengths: 1000 nm = 10,000 Å = 1 μ m (micrometer or 'micron')

(Temporal) Frequency = $\nu = c / \lambda$ Energy = $h\nu = [4.1357e-15 \text{ eV s}] * (c/\lambda)$

Wavenumbers (spatial frequency) are often used especially due to Fourier Transform spectroscopy:

$$ilde{
u} = rac{1}{\lambda}$$
 For units of cm⁻¹, = 10⁷/[wavelength in nm]

Brightness temperature by Wien's law:

T ~[2898 μm K]/λ

Vacuum to Air Wavelength Differences:

 $\lambda_{air} = \lambda_{vac} / n_{air}$

$$\begin{split} n_{air} &= 1 + 0.0000834254 + 0.02406147 / (130 - s^2) + \\ & 0.00015998 / (38.9 - s^2), \\ where s &= 10^4 / \lambda_{vac} \text{ and } \lambda_{vac} \text{ is in Å} \\ \text{Airtovac: see https://www.astro.uu.se/valdwiki/Air-to-vacuum%20conversion} \end{split}$$

Name	Wavelength [nm]	$\begin{array}{c} \text{Wavenumber} \\ [\text{cm}^{-1}] \end{array}$	Frequency [GHz]	Temperature [K]
Near IR Mid-IR Far-IR	$\begin{array}{c} 700-5000\\ 5000-25000\\ 25000-10^6\end{array}$	$\begin{array}{c} 14300-2000\\ 2000-400\\ 400-10\end{array}$	$\begin{array}{c} 428000-60000\\ 60000-12000\\ 12000-300\end{array}$	4100-580 580-120 120-3

 Table 1: Informal Infrared Nomenclature.

Lecture Outline

• Defining the Infrared: A short history

The Infrared Solar Spectrum

- Continuum formation and flare emission
- Atomic lines of the lower atmosphere
- Molecular species
- Coronal emission
- Observing at Infrared Wavelengths
 - Advantages and disadvantages
 - Detectors
 - Optics
 - Cryostats
 - Coronagraphs
- Summary and Outlook
 - This afternoon's tutorial: Coronal IR Spectroscopy using DKIST/CryoNIRSP

Wikimedia commons image (CC BY-SA 3.0 license)

The Infrared Solar Continuum

At long wavelengths, Planck's law becomes the Rayleigh-Jeans law

 $B_\lambda(T)pprox rac{2c}{\lambda^4}k_{
m B}T$

THE SOLAR SPECTRUM

-FREQUENCY ⁷ Hz 10¹⁶ Hz 10¹⁵ Hz 10¹⁴ Hz 10¹³ Hz 10³ GHz 10² GHz 10 GHz 10³ MHz 10² MH INFRARED X-RA) RADIO VIOLET **QUIET SUN** ENVELOPE OF LARGEST BURSTS 10 NASA-GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND AUGUST, 1976 10 10 10-BURST (NON-Ē LARE. 8/4/72 10⁻¹⁰ Ë 10 10-1 S-COMPONENT ACTIVE REGIONS 10-1 10⁻¹³ **ON-FLARE CONDITIONS** 10-14 10⁻⁸ QUIET SUN 10⁻⁶ 10 A 10² A 10³ A 1μm 10μm 10²μm WAVELENGTH 10-1

However, the Sun's spectral distribution is not a perfect blackbody of a single temperature.

Transitioning from Visible to IR, the dominant continuum opacity sources switches from H-minus bound-free to H-minus free-free.

Figure 8.4 and 8.5(b) from Grey, D.F. Stellar Photospheres

Consequences of the transition from H-bf to H- ff continuous opacity:

- 1. Near 1.6 micron, the photons come from the deepest optically accessible layer of the Sun. That is, it has the highest brightness temperature.
- 2. H- ff absorption increases with wavelength, meaning the continuum progressively samples the lower atmosphere.

Continuum observations at long wavelengths:

Fig. 4. Limb brightness profiles determined by occultation at total solar eclipses. Panel a is for 1991 July 11 (Lindsey *et al.* 1992,); b and c are for 1987 March 18 (Roellig *et al.* 1991); and d, e, f, and g were for the 1981 July 31 eclipse (Lindsey *et al.* 1986.)

James Clerk Maxwell Telescope (Hawaii)

Menezes et al. (2022)

The Infrared Solar Continuum: Flare Emission

Simoes et al. (2017) argue IR continuum via ion free-free emission is direct indicator for atmospheric ionization during flares.

Using a QWIP dual-channel detector at the McMath-Pierce Solar Telescope

Figure 1. Snapshot raw images: pre-flare (top), flare peak (17:49:20 UT; bottom), with 5 μ m (left) and 8 μ m (right). 15

Atomic Lines in the Solar Atmosphere

The number of atomic spectral lines decreases in infrared as the energy difference implies lower populated upper energy states.

Lower energy transitions does mean the infrared contains more rovibrational molecular transitions (both from the Sun and Earth's atmosphere!)

NIST Grotrian Diagram For Fe I Eneregy Level [eV] by J state₁₆

IR Atomic Lines: Increased Zeeman Sensitivity

The Doppler broadened width of LTE lines increase linearly with its wavelength

$$\begin{split} \Delta \lambda_{\rm D} &= \frac{\lambda_0^2}{c} \, \Delta \nu_{\rm D} = \lambda_0 \, \frac{w_{\rm T}}{c} \\ w_{\rm T} &= \sqrt{\frac{2k_{\rm B}T}{\mu M} + \xi^2} \end{split}$$

Meanwhile, the Zeeman Effect induced line splitting increases with $g_{eff}\lambda^2$

$$\lambda_{MM'}^{JJ'} = \lambda_0 - \Delta \lambda_B \left(g'M' - gM \right)$$
$$\Delta \lambda_B = \lambda_0^2 \frac{\nu_{\rm L}}{c} = \frac{\lambda_0^2 e_0 B}{4\pi m c^2}$$

A relative "magnetic sensitivity" parameter can be defined as $g_{eff}\lambda$.

Intense field regime occurs when
$$\frac{\Delta \lambda_{\rm B}}{\Delta \lambda_D} \gg 1$$

Equations from E. Landi Degl'Innocenti & M. Landolfi (2004)

Penn (2014)

Region	Atom	Wavelength [nm]	$g_{ m eff}$	$\lambda g_{ m eff}$	
Photosphere	Feı	525	3.0	1575	
	Feı	630	2.5	1575	
	Feı	1565	3.0	4695	Opacity
	Τiι	2231	2.5	5778	Minimum
	Feı	4064	1.25	5080	
	Feı	4137	2.81?	11625?	
	Мg I	12318	1.0	12318	Very strong
Chromosphere	Caı	854	1.1	939	
	Мgı	3682	1.17	4307	<u>1 </u>
	Caı	3697	1.1	4067	Unexplored
Corona	[Fe XIV]	530	1.33	706	
	[Fe XIII]	1075	1.5	1612	
	[Si X]	3934	1.5	5901	Coronal B

 In intense regime, field strength can be measured spectroscopy and is less susceptible to filling factor assumptions.

IR Atomic Lines: Increased Zeeman Sensitivity

Fe I 1565 nm is now a key diagnostic line of DKIST/DL-NIRSP, NST/NIRIS, GREGOR/GRIS.

IR Atomic Lines: The Neutral Helium Triplet

Kitt Peak He I Spectroheliogram (27 June 1998)

* Pronounced absorption for hot active regions and dense filaments. * Very weak in coronal holes. 19

IR Atomic Lines: The Neutral Helium Triplet

Asensio Ramos et al. (2008)						
TABLE 1 He LATOMIC DATA						
Transition $(u \rightarrow l)$	Air wavelength (Å)	$A(\beta_u L_u S J_u \to \beta_l L_l S J_l)$ (s ⁻¹)	B ^{up} _{crit} (G)			
$ \begin{array}{c} 2p \ {}^{3}P_{0} - 2s \ {}^{3}S_{1} \dots \\ 2p \ {}^{3}P_{1} - 2s \ {}^{3}S_{1} \dots \\ 2p \ {}^{3}P_{2} - 2s \ {}^{3}S_{1} \dots \\ 2p \ {}^{3}P_{2} - 2s \ {}^{3}S_{1} \dots \\ \end{array} $	10829.0911 10830.2501 10830.3398	1.022×10^{7} 1.022×10^{7} 1.022×10^{7}	Undefined 0.77 0.77			

- He I 1083 consists of 3 transitions
- Atomically polarized by optical pumping by the anisotropic illumination of the lower atmosphere.
- Collisional rates too low to depolarize permitted transitions.
- Sensitive to Hanle effect up to ~ 8 G (~10x B_{crit}).
- Zeeman + Paschen Back effects at large field strengths.

Trujillo Bueno et al. (2002)

IR Atomic Lines: The Neutral Helium Triplet Active Region Polarization

Schad et al. (2013) Superpenumbral fibril magnetic fields

Zeeman dominated signals within umbra.

Scattering polarization signals outside of umbra, which is responsible for sign flip of line center polarization for red transition and not the lower-level polarization dominated blue component.

Infrared Molecular Lines

- Molecular energy transitions (vibration and rotations) occur at lower energies than atomic electron transitions. - Leads to more molecular transitions in the IR, as is clear given the telluric absorption.

Infrared Molecular Lines

- Molecular energy transitions (vibration and rotations) occur at lower energies than atomic electron transitions. - Leads to more molecular transitions in the IR, as is clear given the telluric absorption.

thick in order to distinguish them from the curves representing MgH and CN

Carbon monoxide is particularly important. Most abundant after H2 due to high dissociation energy.

1.6 and 3.5 um.

Infrared Molecular Lines: Carbon Monoxide

- Noyes & Hall (1972); Ayres & Testerman (1981):
 - Cool (T ~3500 K) CO clouds in solar atmosphere.
- Cool material and low degree of ionization important to model ٠ ambipolar diffusion and field slippage

.015

.01

9

μn

CO

Clouds?

J.T. Jefferies (1994)

6000

5000

4000

T

Infrared Coronal Emission

- The enduring mystery of the solar corona started with observations of visible coronal continuum (Thomas scattering by elections) and line emission from highly ionized lines.
- Limited to solar eclipses due to the bright solar disk at visible and infrared wavelengths.
- Compared to solar disk continuum intensity, visible/IR emission is ~(1-100) : 10⁶
- Why observed them at all?

Some key advantages include:

- 1. Photoexcited emission (Thomson scattering and Vis/IR lines) is brighter at more extended elongations.
- 2. Anisotropic photoexcitation \rightarrow polarized lines in saturated Hanle effect.
- Long wavelength → possibility to measure Zeeman effect magnetic field.

Image credit: UH/Habbal/Druckmuller SDO/AIA

Infrared Coronal Emission Lines: Spectral observations

- Incomplete exploration and atomic data make IR lines a big discovery space (del Zanna & DeLuca (2017) review)
- Mostly observed during eclipses.
- HAO CoMP (UCoMP) observes Alfvenic waves in Fe XIII 1074 nm line + linear polarization coronagraphically.
- DKIST large aperture coronagraphy in progress.

SAO Air-Spec 2017 Eclipse Observations Courtesy of Jenna Samra and Ed DeLuca

Infrared Coronal Emission Lines: New polarimetric results from DKIST

This afternoon we will work with some of the DKIST/CryoNIRSP spectroscopic data from the corona and discuss line emission calculations.

Lecture Outline

- Defining the Infrared: A short history
- The Infrared Solar Spectrum
 - Continuum formation and flare emission
 - Atomic lines of the lower atmosphere
 - Molecular species
 - Coronal emission
- Observing at Infrared Wavelengths
 - Advantages and disadvantages
 - Detectors
 - Optics
 - Cryostats
 - Coronagraphs
- Summary and Outlook
 - This afternoon's tutorial: Coronal IR Spectroscopy using DKIST/CryoNIRSP

Wikimedia commons image (CC BY-SA 3.0 license)

Infrared Solar Physics: Advantages and Disadvantages

Harvey and Hall (1971); Penn (2014)

Advantages	Disadvantages
Increased Zeeman resolution	Fewer atomic absorption lines
Large number of molecular rotation-vibration lines	Larger diffraction limit**
Ability to probe different heights in the solar atmosphere using continuum radiation	Increased thermal background
Smaller instrumental polarization	Fewer solar photons*
Less instrumental scattering	Detector complexities
Less atmospheric scattering	More limited optical transmissive materials (i.e. can require more complex powered mirrors)
Better atmospheric seeing [Fried r ₀ ~ λ ^{6/5}]	Atmospheric telluric absorption

** Note collecting area increases as D² whereas the diff. limit decreases as D⁻¹. Large aperture boosts value of IR science

Infrared Solar Physics: Earth's Atmosphere Transmission Spectrum

Figure 1: Atmospheric transmission from 560 to 21000 nm as measured from the McMath–Pierce facility at Kitt Peak. The molecules which are responsible for the various absorption bands are marked. Image reproduced with permission from Hinkle *et al.* (2003), copyright by AAS.

IR Solar Physics: Telluric Absorption near CO fundamental band.

Infrared Solar Physics: Advantages and Disadvantages

Harvey and Hall (1971); Penn (2014)

Advantages	Disadvantages
Increased Zeeman resolution	Fewer atomic absorption lines
Large number of molecular rotation-vibration lines	Larger diffraction limit**
Ability to probe different heights in the solar atmosphere using continuum radiation	Increased thermal background
Smaller instrumental polarization	Fewer solar photons*
Less instrumental scattering	Detector complexities
Less atmospheric scattering	More limited optical transmissive materials (i.e. can require more complex powered mirrors)
Better atmospheric seeing [Fried r ₀ ~ λ ^{6/5}]	Atmospheric telluric absorption

** Note collecting area increases as D² whereas the diff. limit decreases as D⁻¹. Large aperture boosts value of IR science

Infrared Detectors: Major Sensor Materials

Silicon is the dominant material used short of ~ 900 nm.

The range of infrared materials used is broad and evolves as the material science and fabrication techniques develops.

HgCdTe ("Mer-Cad-Tel") is dominant for astronomical imaging applications due to:

- Large λ sensitivity range
- Tunable bandgap.
- Large array sizes possible

Infrared Detectors: FPA development and sizes and pitch

FPA: "Focal plane array"

Infrared materials need to be bonded to silicon ROICs.

EUV lithography standard size is 23 x 33 mm, which can limit the size of continuous arrays.

Fig. 30. Progression of ROIC format at RVS over time (after Ref. 96).

Rogalski (2012)

Infrared Detectors: Unique sampling modes for measurements

"Up-the-ramp" Sampling

How it works: The H2RGs individual pixel charges can be read non-destructively (i.e. the charge is not reset until the end of a sequence). So, some regions of the array can be allowed to saturate while the integration continues up the well.

Images courtesy JWST Master Class 2020

36

Infrared Optics: Materials

Transmissive optical materials in the infrared are fewer and more expensive. Mostly reflective optical trains are needed to preserve long wavelengths.

Properties of Optical Materials

Material	Abbe Number V _d	Coefficient of Thermal Expansion (10-6/°C)	Conductivity (W/m°C)	Heat Capacity (J/gm°C)	Density at 25°C (gm/cm3)	Knoop Hardness (kg/mm2)	÷
BK 7	64.17	7.1	1.114	0.858	2.51	610	+
SF 2	33.85	8.4	0.735	0.498	3.86	410	+
UV Fused Silica	67.8	0.52	1.38	0.75	2.202	600	+
CaF ₂	94.96	18.85	9.71	0.85	3.18	158	+
MgF ₂	106.18	13.7 to c axis 8.48 ⊥ to c axis	21 to c axis 30 to ⊥ c axis	1.024	3.177	415	+
Crystal Quartz	69.87	7.1 to c axis 13.2 ⊥ to c axis	10.4 to c axis 6.2 ⊥ to c axis	0.74	2.649	740	+
Borofloat®	65.41	3.25	1.2	0.83	2.2	480	+
Zerodur®	56.09	0 ± 0.1	1.46	0.80	2.53	620	+
ZnSe	84.45	7.6	18.0	0.399	5.27	105	+

Common Optical Material Properties

Material	Transmission Range	Cost	÷ Features	$\frac{\mathbb{A}}{\mathbb{V}}$
BK 7	380–2100 nm	Low	High transmission for visible to near infrared applications, the most common optical glass	
UV Fused Silica (UVFS)	195–2100 nm	Moderate	Excellent homogeneity and low thermal expansion, high laser damage resistance	
CaF ₂	170–8000 nm	High	High transmission for deep UV to infrared applications	
MgF ₂	150–6500 nm	High	Birefringent material, excellent for use in the deep UV to infrared	
ZnSe	600–16000 nm	High	Excellent choice for IR lens due to its broad wavelength range. Perfect candidate to use with high power infrared laser due to its low absorption coefficient.	

Reference: Newport Tech Note: Optical Materials

IR Material Transmission Ranges

Infrared Optics: Materials

Transmissive optical materials in the infrared are fewer and more expensive. Mostly reflective optical trains are needed to preserve long wavelengths.

This is one of the fundamental reasons why DKIST/CryoNIRSP operates alone.

A fold mirror upstream of all transmissive optics in deployed into the beam when using CryoNIRSP.

Infrared Solar Telescopes: All-reflective designs

McMath-Pierce Solar Telescope Kitt-Peak Arizona (1962-2018)

Goode Solar Telescope Big Bear, CA (2009-)

Daniel K Inouye Solar Telescope Haleakala, Hawaii (2022-)

Other high-resolution ground-based facilities (esp. those built prior to ~2005) use an evacuated optical path to decrease internal thermal seeing effects, but at the cost of highly attenuated infrared transmission.

Swedish Solar Telescope: Entrance optical lens is ~80 mm thick fused silica. Dunn Solar Telescope: Entrance/exit fused silica windows.

IR Instrumentation: Cooling requirements

Lower bandgap energies of IR cameras require cooling to maintain low dark and thermal background current.

IR cameras usually require deep cooling (~77 K). Thermal IR instruments also must cool upstream optics to reduce in-band thermal emission.

IR Instrumentation: The CryoNIRSP cryostat

The grating is located in a separate housing to reduce stray light.

IR Instrumentation: Coronagraphy

As previously mentioned, in the IR, scattered light properties of the sky and instrumentation are improved and the magnetic field sensitivity of emission lines enhanced.

This motivates the building of infrared performant coronagraphs.

Fig. 3.46. Coronagraph. After Lyot (1932)

Classical Lyot coronagraph minimizes scatter at primary singlet objective and a pupil stop at D to below diffracted light at the edges of the objective.

IR Instrumentation: Coronagraphy

DKIST is an off-axis unobscured large-aperture coronagraph.

Inverse occulting at prime field stop, Lyot stop at pupil, secondary focus limb occulting.

In-situ cleaning helps maintain cleanliness of primary mirror.

Lecture Outline - Summary

- Defining the Infrared: A short history
- The Infrared Solar Spectrum
 - Continuum formation and flare emission
 - Atomic lines of the lower atmosphere
 - Molecular species
 - Coronal emission
- Observing at Infrared Wavelengths
 - Advantages and disadvantages
 - Detectors
 - Optics
 - Cryostats
 - Coronagraphs

Summary and Outlook

 This afternoon's tutorial: Coronal IR Spectroscopy using DKIST/CryoNIRSP

Wikimedia commons image (CC BY-SA 3.0 license)