Handling NIRIS Data: Calibration, Processing, and Inversion

Taylor Baildon BBSO Summer School 2024 Big Bear Solar Observatory, NJIT/CSTR 2024 August 1

Outline

- PART I: NIRIS Instrument
	- Brief review of scientific principles and goals
	- Instrumental design
- PART II: NIRIS Data Processing
	- Steps in the NIRIS pipeline
	- Calibration of instrumental crosstalk
- PART III: Inverting NIRIS Data
	- Brief review of Stokes inversions

Part I: NIRIS instrument

Science enabled by NIRIS

- High-resolution spectroscopy and polarimetry using Zeemansensitive spectral lines in the NIR
	- Zeeman splitting is a function of $g\lambda^2B$

- Imaging deepest photosphere through base of corona
	- Photosphere opacity minimum at 1.6 μ m

Exploiting the Zeeman effect

- The (orbital) magnetic moments of an atom's electrons interact with an external magnetic field
	- States having different magnetic quantum numbers (m_ℓ) shift in energy in the presence of a magnetic field: $V = -\vec{\mu} \cdot \vec{B}$
- Resulting Zeeman triplet:

New Jersey Institute of Technology

No information about direction of \vec{B} from **the intensity spectrum alone**

Exploiting the Zeeman effect

We can get information about the direction of \vec{B} by looking at the polarization of the observed spectrum

Stokes parameters: I, Q, U, V

- Transverse Zeeman effect
	- \vec{B} perpendicular to LOS
- Longitudinal Zeeman effect
	- \vec{B} along LOS

New Jersey Institute of Technology

Measuring magnetic fields with NIRIS

- Method for inferring \vec{B} using polarization measurements:
	- 1. Measure $I(\lambda)$, $Q(\lambda)$, $U(\lambda)$, $V(\lambda)$
	- 2. Relate $I(\lambda)$, $Q(\lambda)$, $U(\lambda)$, $V(\lambda)$ to \vec{B} using a radiative transfer theory
		- This will include Zeeman effect, Hanle effect (depolarization through scattering), assumptions about solar atmosphere, etc.
	- 3. Find \vec{B} by solving the inverse problem ("Stokes inversion")
- NIRIS: dual Fabry-Perot system that performs dual-beam polarimetry
	- 2 FPIs are used as a tunable narrow-band filter, scans over spectral line
	- Dual-beam design reduces seeing-induced polarization crosstalk
		- Beam splitter separates orthogonal linear polarizations
		- Combinations of the two resulting images produce I, Q, U, V images

Part II: NIRIS data processing

modulation angle

Separating I, Q, U, V images

- Modulator waveplate (frequency ω) modulates polarization states differently
	- Q and U (linear polarization) modulated at 4ω
	- V (circular polarization) modulated at 2ω

New Jersey Institute of Technology

• Observed modulated profile is a combination of I, Q , U , V :

$$
I'' = \frac{1}{2} \left[I' + \frac{Q'}{2} \left((1 + \cos \delta) + (1 - \cos \delta) \cos 4\theta \right) + \frac{U'}{2} \left(1 - \cos \delta \right) \sin 4\theta - V' \sin \delta \sin 2\theta \right]
$$

waveplate retardation

Separating I, Q, U, V images

• I, Q, U, V signals can be recovered via different linear combinations of integrations $1 - 8$

New Jersey Institute of Technology

Separating I, Q, U, V images

- Remember: our camera frame rate isn't exactly matched with the modulator frequency – there will be some offset ϕ when integrating over the frames
	- For a perfectly matched camera frame rate:

$$
Q' = \int_{0}^{\pi/8} I'' d\theta - \int_{\pi/8}^{1} I'' d\theta + \int_{\pi/4}^{1} I'' d\theta + \int_{\pi/2}^{1} I'' d\theta + \int_{\pi/2}^{1} I'' d\theta - \int_{\pi/8}^{1} I'' d\theta - \int_{\pi/8}^{1} I'' d\theta + \int_{\pi/8}^{1} I'' d\theta + \int_{\pi/8}^{1} I'' d\theta
$$
\n
$$
U' = \int_{0}^{\pi/8} I'' d\theta + \int_{\pi/8}^{1} I'' d\theta - \int_{\pi/8}^{1} I'' d\theta - \int_{\pi/8}^{1} I'' d\theta + \int_{\pi/2}^{1} I'' d\theta + \int_{\pi/2}^{1} I'' d\theta + \int_{\pi/2}^{1} I'' d\theta - \int_{\pi/8}^{1} I'' d\theta - \int_{\pi/8}^{1} I'' d\theta
$$
\n
$$
= \begin{array}{ll}\n\text{Our Case:} \\
\text{Our case:} \\
\alpha^{1/8+\phi} & \pi^{1/4+\phi} \\
Q'' = \int_{\phi}^{1} I'' d\theta - \int_{\pi/8+\phi}^{1} I'' d\theta + \int_{\pi/4+\phi}^{1} I'' d\theta + \int_{\pi/2+\phi}^{1} I'' d\theta + \int_{\pi/2+\phi}^{1} I'' d\theta - \int_{\pi/8+\phi}^{1} I'' d\theta - \int_{\pi/8+\phi}^{1} I'' d\theta + \int_{\pi
$$

 \blacktriangleright Leakage between Q and U

Our case:

$$
Q'' = \int_{\phi}^{\pi/8+\phi} I'' d\theta - \int_{\frac{\pi}{8}+\phi} I'' d\theta - \int_{\frac{\pi}{8}+\phi} I'' d\theta + \int_{\frac{3\pi}{8}+\phi} I'' d\theta + \int_{\frac{3\pi}{8}+\phi} I'' d\theta + \int_{\frac{3\pi}{8}+\phi} I'' d\theta - \int_{\frac{5\pi}{8}+\phi} I'' d\theta - \int_{\frac{5\pi}{8}+\phi} I'' d\theta - \int_{\frac{3\pi}{8}+\phi} I'' d\theta + \int_{\frac{\pi}{8}+\phi} I'' d\theta + \int_{\frac{\pi}{8}+\phi} I'' d\theta
$$

= $Q' \cos 4\phi - U' \sin 4\phi$

- Similar effect for U and V
- Correct for leakage caused by phase offset by multiplying the Stokes vector by a restoration matrix: M_{ϕ}

$$
\begin{bmatrix} I' \\ Q' \\ \text{signal that has} \\ \text{passed through} \\ \text{optical chain} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 4\phi & \sin 4\phi & 0 \\ 0 & -\sin 4\phi & \cos 4\phi & 0 \\ 0 & 0 & 0 & \sec 2\phi \end{bmatrix} \begin{bmatrix} I'' \\ Q'' \\ U'' \\ V'' \end{bmatrix}
$$
\nMeanured at detector optical chain

- NIRIS uses many different optical elements that are difficult to model
- We are trying to recover the "true" Stokes vector \vec{S} , but the polarization of the light entering the telescope is altered as it passes through the telescope and relay optics
- The way an optical element alters polarization of light is described by a 4×4 Mueller matrix M:

$$
\vec{S}' = \mathbf{M}\vec{S}
$$

- Every element of the NIRIS relay optics alters the polarization of the incident beam
	- We can quantify the total effect of an optical chain using one Mueller matrix M :

$$
\mathbf{M} = \mathbf{M}_1 \mathbf{M}_2 \mathbf{M}_3 \dots \mathbf{M}_n
$$

• Starting with the telescope Mueller matrix **T** (combined effects of primary and secondary mirrors), the signal after phase correction is:

$$
\vec{S}' = MS = [M_{\text{rest}}R(HA)M_4R(\text{dec})M_3T]\vec{S}
$$

• Trace the path of the light:

• Starting with the telescope Mueller matrix T (combined effects of primary and secondary mirrors), the signal after phase correction is:

$$
\vec{S}' = MS = [M_{\text{rest}}R(HA)M_4R(\text{dec})M_3T]\vec{S}
$$

- Trace the path of the light:
	- 1. \vec{S} is altered as the beam passes through the primary and secondary mirrors, whose effects are quantified by T

• Starting with the telescope Mueller matrix T (combined effects of primary and secondary mirrors), the signal after phase correction is:

$$
\vec{S}' = MS = [M_{\text{rest}}R(\text{HA})M_{4}R(\text{dec})M_{3}T]\ \vec{S}
$$

- Trace the path of the light:
	- 1. \vec{S} is altered as the beam passes through the primary and secondary mirrors, whose effects are quantified by T
	- 2. The beam reflects off mirror 3 $(M₃)$ and is sent down the declination axis of the telescope, resulting in a rotation in dec, $R(dec)$

• Starting with the telescope Mueller matrix T (combined effects of primary and secondary mirrors), the signal after phase correction is:

 $\vec{S}' = \mathbf{MS} = [\mathbf{M_{rest}R(HA)M_4R(dec)M_3T}] \ \vec{S}$

- Trace the path of the light:
	- 1. \vec{S} is altered as the beam passes through the primary and secondary mirrors, whose effects are quantified by T
	- 2. The beam reflects off mirror 3 $(M₃)$ and is sent down the declination axis of the telescope, resulting in a rotation in dec, $R(dec)$
	- 3. The beam reflects off mirror 4 ($M₄$) and is sent down the polar axis of the telescope, resulting in a rotation in hour angle, $R(HA)$

• Starting with the telescope Mueller matrix T (combined effects of primary and secondary mirrors), the signal after phase correction is:

 $\vec{S}' = \mathbf{MS} = [\mathbf{M_{rest}R}(\text{HA})\mathbf{M_4R}(\text{dec})\mathbf{M_3T}] \ \vec{S}$

- Trace the path of the light:
	- 1. \vec{S} is altered as the beam passes through the primary and secondary mirrors, whose effects are quantified by T
	- 2. The beam reflects off mirror 3 (M_3) and is sent down the declination axis of the telescope, resulting in a rotation in dec, $R(dec)$
	- 3. The beam reflects off mirror 4 (M_4) and is sent down the polar axis of the telescope, resulting in a rotation in hour angle, $R(HA)$
	- 4. The light passes through all stationary optical elements past M4, whose effects are quantified by M_{rest}

• Starting with the telescope Mueller matrix T (combined effects of primary and secondary mirrors), the signal after phase correction is:

 $\vec{S}' = \mathsf{MS} = [\mathsf{M}_{\text{rest}} \mathsf{R}(\mathsf{HA}) \mathsf{M}_{4} \mathsf{R}(\mathsf{dec}) \mathsf{M}_{3} \mathsf{T}] \ \vec{S}$

- Trace the path of the light:
	- 1. \vec{S} is altered as the beam passes through the primary and secondary mirrors, whose effects are quantified by T
	- 2. The beam reflects off mirror 3 $(M₃)$ and is sent down the declination axis of the telescope, resulting in a rotation in dec, $R(dec)$
	- 3. The beam reflects off mirror 4 (M_4) and is sent down the polar axis of the telescope, resulting in a rotation in hour angle, $R(HA)$
	- 4. The light passes through all stationary optical elements past M4, whose effects are quantified by M_{rest}
	- 5. The light reaches the camera

Signal after phase correction:

Phase correction
\n
$$
\vec{S'} = M(HA, dec)\vec{S} = [M_{rest}R(HA)M_4R(dec)M_3\vec{T}] \vec{S}
$$
\nmeasured signal $\vec{s'}$
\n
$$
M_{\phi}\vec{S'} = [M_{rest}R(HA)M_4R(dec)M_3] \vec{S}
$$
\n
$$
M(HA, dec)
$$

• Now we can (theoretically) find the "true" Stokes vector \vec{S} from the measured signal $\vec{S}^{\prime\prime}$:

$$
\vec{S} = \mathbf{M}^{-1}(\text{HA}, \text{dec})\mathbf{M}_{\phi}\vec{S}^{\prime\prime}
$$

$$
= [\mathbf{M}_{\text{rest}}\mathbf{R}(\text{HA})\mathbf{M}_4\mathbf{R}(\text{dec})\mathbf{M}_3]^{-1}\mathbf{M}_{\phi}\vec{S}^{\prime\prime}
$$

Finding calibration matrix M_{rest}

• We can measure $M(HA, dec₀)$ (details to come) over one day, and use this to find M_{rest} :

NIRIS pipeline Calibration Calibration

Measuring $M(HA_i, dec_0)$

New Jersey Institute of Technology

Theoretical I, Q, U, V signals:

 \vec{S}_i' $\vec{g}_i' = \mathbf{M}(\mathrm{HA}_i,\mathrm{dec}_0)\mathbf{M}_{QWP}\mathbf{M}_{LP}\vec{S}_i$ Unknowns: All 16 elements of $M(HA_i, dec_0)$ Unknowns: θ_{LP} orientation of LP transmission axis θ_{OWP} orientation of QWP fast axis δ_{OWP} QWP surface retardation

Fit all these parameters to the measured I, Q, U, V signals (red)

Simulating $M(HA, dec)$ from M_{rest}

- Take calibration measurements throughout the day, once per year, to find $M(HA, dec_0)$
- Find M_{rest} from $M(HA, dec_0)$
- Use M_{rest} to calculate $M(HA, dec)$ for any combination of HA and dec (i.e. any day of the year)
	- $M(HA, dec) = M_{ref}R(HA)M_{4}R(dec)M_{3}$
- Apply a different calibration matrix for each observation date/time

NIRIS pipeline Calibration Calibration

2024/05/19 calibrated data

Back to the NIRIS pipeline…

- Surprise! Another crosstalk correction
	- A finer correction for $Q \leftrightarrow V$ and $U \leftrightarrow V$ crosstalk
		- Notable residual crosstalk in images with strong magnetic fields (ARs)
	- Choose crosstalk weights that optimize the symmetry (antisymmetry) of the Q, U (V) Stokes profiles
		- Deviations from symmetric (antisymmetric) $Q, U, (V)$ profiles are indicative of additional crosstalk
		- Iterative process
- Image processing finished! Results:
	- cal processed images after Mueller matrix crosstalk calibration (QS)
	- cals processed images after iterative crosstalk correction (AR)

Part III: Inverting NIRIS Data

Stokes inversions using NIRIS data

- Straight forward problem:
	- Assumptions:
		- Properties of the solar atmosphere are known
		- Four Stokes profiles are unknown
	- Solve the radiative transfer equation (RTE) directly to find Stokes profiles
- Inverse problem:
	- For our Solar observations:
		- Four Stokes profiles are known (measured)
		- Properties of the solar atmosphere are unknown
	- Requires inversion of the RTE

Stokes inversions using NIRIS data

• Radiative transfer equation:

$$
\frac{d\vec{l}}{d\tau_c} = \widetilde{K}(\vec{l} - \vec{S})
$$

- \vec{l} \vec{I} Stokes pseudo-vector: $\vec{I} \equiv [I, Q, U, V]^T$
- τ_c optical depth at continuum wavelength
- $-\vec{S}$ source function vector
- \tilde{K} propagation matrix; accounts for:
	- Absorption withdrawal of same amount of energy from all polarization states
	- Pleochromism differential absorption for the polarization states
	- Dispersion transfer among polarization states
- Mapping between two spaces:
	- measurements + instrumental error \rightarrow physical quantities + uncertainties
- Mapping represents the physics that generates observables from given physical conditions in the object
	- Same observable can yield different results in inversion, depending on assumed underlying physics

Stokes inversions using NIRIS data

- Model atmosphere parameters:
	- T Temperature
	- p Pressure
	- v_{LOS} Bulk line-of-sight velocity field
	- \vec{B} Magnetic vector field
		- B Strength
		- ν Inclination with respect to LOS
		- φ Azimuth
	- Ad hoc variables
		- ξ_{mic} Micro-turbulence velocity
		- ξ_{mac} Macro-turbulence velocity
		- f Filling factor
- Inversion methods:
	- Local thermodynamic equilibrium (LTE)
	- Weak-field
	- Micro-structured magnetic atmospheres (MISMA)
	- Milne-Eddington (ME)

Summary

- NIRIS targets Zeeman-sensitive lines in the NIR to obtain information about Solar magnetic fields and other quantities of interest
- NIRIS uses dual-beam polarimetry to measure Stokes profiles
	- These profiles are used in Stokes inversion methods to obtain magnetic field vector maps
- Instrumental cross-talk needs to be carefully calibrated to yield accurate Stokes inversion results
	- Mueller calculus
	- Iterative fine correction
- The newly-implemented NIRIS cross-talk calibration method works!

