Handling NIRIS Data: Calibration, Processing, and Inversion

Taylor Baildon BBSO Summer School 2024 Big Bear Solar Observatory, NJIT/CSTR 2024 August 1

Outline

- PART I: NIRIS Instrument
 - Brief review of scientific principles and goals
 - Instrumental design
- PART II: NIRIS Data Processing
 - Steps in the NIRIS pipeline
 - Calibration of instrumental crosstalk
- PART III: Inverting NIRIS Data
 - Brief review of Stokes inversions

Part I: NIRIS instrument

Science enabled by NIRIS

- High-resolution spectroscopy and polarimetry using Zeemansensitive spectral lines in the NIR
 - Zeeman splitting is a function of $g\lambda^2 B$

Line	Wavelength	Lande factor $g_{ m eff}$	Target
Fe I doublet	1564.85 nm	3	Deep photosphere
	1565.29 nm	1.53	
He I multiplet	10829.08 Å	2.0	Upper
	10830.25 Å	1.75	chromosphere, base of corona
	10830.34 Å	0.875	

- Imaging deepest photosphere through base of corona
 - Photosphere opacity minimum at 1.6 μ m

Exploiting the Zeeman effect

- The (orbital) magnetic moments of an atom's electrons interact with an external magnetic field
 - States having different magnetic quantum numbers (m_ℓ) shift in energy in the presence of a magnetic field: $V = -\vec{\mu} \cdot \vec{B}$
- Resulting Zeeman triplet:

New Jersey Institute of Technology

Component	$\overrightarrow{B} \perp$ to LOS	\overrightarrow{B} to LOS
π (non-shifted)	+ linear polarization	none
σ (shifted)	 linear polarization 	circular polarization

• No information about direction of \vec{B} from the intensity spectrum alone

Exploiting the Zeeman effect

• We can get information about the direction of \vec{B} by looking at the polarization of the observed spectrum

- Stokes parameters: *I*, *Q*, *U*, *V*

- Transverse Zeeman effect
 - \vec{B} perpendicular to LOS
- Longitudinal Zeeman effect
 - \checkmark \vec{B} along LOS

Component	$\overrightarrow{B} \perp$ to LOS	\overrightarrow{B} to LOS
π (non-shifted)	+ linear polarization	none
σ (shifted)	 linear polarization 	circular polarization

New Jersey Institute of Technology

Measuring magnetic fields with NIRIS

- Method for inferring \vec{B} using polarization measurements:
 - 1. Measure $I(\lambda), Q(\lambda), U(\lambda), V(\lambda)$
 - 2. Relate $I(\lambda)$, $Q(\lambda)$, $U(\lambda)$, $V(\lambda)$ to \vec{B} using a radiative transfer theory
 - This will include Zeeman effect, Hanle effect (depolarization through scattering), assumptions about solar atmosphere, etc.
 - 3. Find \vec{B} by solving the inverse problem ("Stokes inversion")
- NIRIS: dual Fabry-Perot system that performs dual-beam polarimetry
 - 2 FPIs are used as a tunable narrow-band filter, scans over spectral line
 - Dual-beam design reduces seeing-induced polarization crosstalk
 - Beam splitter separates orthogonal linear polarizations
 - Combinations of the two resulting images produce *I*, *Q*, *U*, *V* images

Part II: NIRIS data processing

modulation angle

Separating I, Q, U, V images

- Modulator waveplate (frequency ω) modulates polarization states differently
 - $\, Q$ and U (linear polarization) modulated at 4ω
 - V (circular polarization) modulated at 2ω

New Jersey Institute of Technology

• Observed modulated profile is a combination of *I*, *Q*, *U*, *V*:

$$I'' = \frac{1}{2} \left[I' + \frac{Q'}{2} \left((1 + \cos \delta) + (1 - \cos \delta) \cos 4\theta \right) + \frac{U'}{2} (1 - \cos \delta) \sin 4\theta - V' \sin \delta \sin 2\theta \right]$$
waveplate retardation

Separating I, Q, U, V images

• I, Q, U, V signals can be recovered via different linear combinations of integrations 1 - 8

New Jersey Institute of Technology

Separating I, Q, U, V images

- Remember: our camera frame rate isn't exactly matched with the modulator frequency there will be some offset ϕ when integrating over the frames
 - For a perfectly matched camera frame rate:

$$Q' = \int_{0}^{\pi/8} I'' d\theta - \int_{\pi/8}^{\pi/4} I'' d\theta - \int_{\pi/4}^{3\pi/8} I'' d\theta + \int_{3\pi/8}^{\pi/2} I'' d\theta + \int_{\pi/2}^{5\pi/8} I'' d\theta - \int_{5\pi/8}^{3\pi/4} I'' d\theta - \int_{3\pi/4}^{7\pi/8} I'' d\theta + \int_{7\pi/8}^{\pi} I'' d\theta = \int_{\pi/8}^{\pi/4} I'' d\theta + \int_{\pi/8}^{\pi/4} I'' d\theta + \int_{\pi/8}^{\pi/2} I'' d\theta + \int_{\pi/2}^{5\pi/8} I'' d\theta + \int_{5\pi/8}^{3\pi/4} I'' d\theta - \int_{3\pi/4}^{7\pi/8} I'' d\theta - \int_{\pi/8}^{\pi} I'' d\theta = \int_{\pi/8}^{\pi/4} I'' d\theta + \int_{\pi/8}^$$

• Our case:

$$Q'' = \int_{\phi}^{\pi/8+\phi} I'' d\theta - \int_{\frac{\pi}{8}+\phi}^{\frac{\pi}{4}+\phi} I'' d\theta - \int_{\frac{\pi}{4}+\phi}^{\frac{3\pi}{8}+\phi} I'' d\theta + \int_{\frac{3\pi}{8}+\phi}^{\frac{\pi}{2}+\phi} I'' d\theta + \int_{\frac{5\pi}{8}+\phi}^{\frac{5\pi}{8}+\phi} I'' d\theta - \int_{\frac{5\pi}{8}+\phi}^{\frac{3\pi}{4}+\phi} I'' d\theta + \int_{\frac{7\pi}{8}+\phi}^{\pi+\phi} I'' d\theta = Q' \cos 4\phi - U' \sin 4\phi$$

- Similar effect for U and V
- Correct for leakage caused by phase offset by multiplying the Stokes vector by a restoration matrix: M_{ϕ}

Demodulated signal that has passed through optical chain
$$\begin{bmatrix} I'\\Q'\\U'\\V'\end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0\\0 & \cos 4\phi & \sin 4\phi & 0\\0 & -\sin 4\phi & \cos 4\phi & 0\\0 & 0 & 0 & \sec 2\phi \end{bmatrix} \begin{bmatrix} I''\\Q''\\U''\\V''\end{bmatrix}$$
 Measured at detector

- NIRIS uses many different optical elements that are difficult to model
- We are trying to recover the "true" Stokes vector \vec{S} , but the polarization of the light entering the telescope is altered as it passes through the telescope and relay optics
- The way an optical element alters polarization of light is described by a 4×4 Mueller matrix **M**:

$$\vec{S}' = \mathbf{M}\vec{S}$$

- Every element of the NIRIS relay optics alters the polarization of the incident beam
 - We can quantify the total effect of an optical chain using one Mueller matrix **M**:

$$\mathbf{M} = \mathbf{M}_1 \mathbf{M}_2 \mathbf{M}_3 \dots \mathbf{M}_n$$

• Starting with the telescope Mueller matrix **T** (combined effects of primary and secondary mirrors), the signal after phase correction is:

 $\vec{S}' = \mathbf{MS} = [\mathbf{M}_{\text{rest}}\mathbf{R}(\mathbf{HA})\mathbf{M}_4\mathbf{R}(\mathbf{dec})\mathbf{M}_3\mathbf{T}]\vec{S}$

• Trace the path of the light:

• Starting with the telescope Mueller matrix **T** (combined effects of primary and secondary mirrors), the signal after phase correction is:

$$\vec{S}' = MS = [M_{rest}R(HA)M_4R(dec)M_3T]\vec{S}$$

- Trace the path of the light:
 - 1. \vec{S} is altered as the beam passes through the primary and secondary mirrors, whose effects are quantified by **T**

• Starting with the telescope Mueller matrix **T** (combined effects of primary and secondary mirrors), the signal after phase correction is:

$$\vec{S}' = MS = [M_{rest}R(HA)M_4R(dec)M_3T]\vec{S}$$

- Trace the path of the light:
 - 1. \vec{S} is altered as the beam passes through the primary and secondary mirrors, whose effects are quantified by **T**
 - 2. The beam reflects off mirror 3 (M_3) and is sent down the declination axis of the telescope, resulting in a rotation in dec, R(dec)

• Starting with the telescope Mueller matrix **T** (combined effects of primary and secondary mirrors), the signal after phase correction is:

 $\vec{S}' = MS = [M_{rest}R(HA)M_4R(dec)M_3T]\vec{S}$

- Trace the path of the light:
 - 1. \vec{S} is altered as the beam passes through the primary and secondary mirrors, whose effects are quantified by **T**
 - 2. The beam reflects off mirror 3 (M_3) and is sent down the declination axis of the telescope, resulting in a rotation in dec, R(dec)
 - 3. The beam reflects off mirror 4 (M_4) and is sent down the polar axis of the telescope, resulting in a rotation in hour angle, R(HA)

• Starting with the telescope Mueller matrix **T** (combined effects of primary and secondary mirrors), the signal after phase correction is:

 $\vec{S}' = MS = [M_{rest}R(HA)M_4R(dec)M_3T]\vec{S}$

- Trace the path of the light:
 - 1. \vec{S} is altered as the beam passes through the primary and secondary mirrors, whose effects are quantified by **T**
 - 2. The beam reflects off mirror 3 (M_3) and is sent down the declination axis of the telescope, resulting in a rotation in dec, R(dec)
 - 3. The beam reflects off mirror 4 (M_4) and is sent down the polar axis of the telescope, resulting in a rotation in hour angle, R(HA)
 - 4. The light passes through all stationary optical elements past M4, whose effects are quantified by M_{rest}

• Starting with the telescope Mueller matrix **T** (combined effects of primary and secondary mirrors), the signal after phase correction is:

 $\vec{S}' = MS = [M_{rest}R(HA)M_4R(dec)M_3T]\vec{S}$

- Trace the path of the light:
 - 1. \vec{S} is altered as the beam passes through the primary and secondary mirrors, whose effects are quantified by **T**
 - 2. The beam reflects off mirror 3 (M_3) and is sent down the declination axis of the telescope, resulting in a rotation in dec, R(dec)
 - 3. The beam reflects off mirror 4 (M_4) and is sent down the polar axis of the telescope, resulting in a rotation in hour angle, R(HA)
 - 4. The light passes through all stationary optical elements past M4, whose effects are quantified by M_{rest}
 - 5. The light reaches the camera

• Signal after phase correction:

Phase correction
applied to
measured signal
$$\vec{s}''$$

$$\mathbf{M}_{\phi}\vec{S}'' = [\mathbf{M}_{\text{rest}}\mathbf{R}(\text{HA})\mathbf{M}_{4}\mathbf{R}(\text{dec})\mathbf{M}_{3}]\vec{S}$$
$$\mathbf{M}_{\phi}\vec{S}'' = [\mathbf{M}_{\text{rest}}\mathbf{R}(\text{HA})\mathbf{M}_{4}\mathbf{R}(\text{dec})\mathbf{M}_{3}]\vec{S}$$
$$\mathbf{M}_{\phi}\vec{S}'' = [\mathbf{M}_{\text{rest}}\mathbf{R}(\text{HA})\mathbf{M}_{4}\mathbf{R}(\text{dec})\mathbf{M}_{3}]\vec{S}$$

• Now we can (theoretically) find the "true" Stokes vector \vec{S} from the measured signal \vec{S} ":

$$\vec{S} = \mathbf{M}^{-1}(\mathbf{HA}, \mathbf{dec})\mathbf{M}_{\phi}\vec{S}^{\prime\prime}$$

$$= [\mathbf{M}_{\text{rest}}\mathbf{R}(\text{HA})\mathbf{M}_{4}\mathbf{R}(\text{dec})\mathbf{M}_{3}]^{-1}\mathbf{M}_{\phi}\vec{S}^{\prime\prime}$$

Finding calibration matrix M_{rest}

• We can measure $M({\rm HA}, {\rm dec}_0)$ (details to come) over one day, and use this to find M_{rest} :

NIRIS pipeline

Calibration

Measuring $M(HA_i, dec_0)$

New Jersey Institute of Technology

• Theoretical *I*, *Q*, *U*, *V* signals:

 $\vec{S}_i' = \mathbf{M}(\mathbf{HA}_i, \mathbf{dec}_0)\mathbf{M}_{OWP}\mathbf{M}_{LP}\vec{S}_i$ Unknowns: All 16 elements of $M(HA_i, dec_0)$ Unknowns: θ_{LP} orientation of LP transmission axis θ_{OWP} orientation of QWP fast axis δ_{OWP} QWP surface retardation

• Fit all these parameters to the measured *I*, *Q*, *U*, *V* signals (red)

Simulating M(HA, dec) from M_{rest}

- Take calibration measurements throughout the day, once per year, to find $M(HA, dec_0)$
- Find \mathbf{M}_{rest} from $\mathbf{M}(\text{HA}, \text{dec}_0)$
- Use M_{rest} to calculate M(HA, dec) for any combination of HA and dec (i.e. any day of the year)
 - $M(HA, dec) = M_{rest}R(HA)M_4R(dec)M_3$
- Apply a different calibration matrix for each observation date/time

NIRIS pipeline

Calibration

2024/05/19 calibrated data

Back to the NIRIS pipeline...

- Surprise! Another crosstalk correction
 - A finer correction for $Q \leftrightarrow V$ and $U \leftrightarrow V$ crosstalk
 - Notable residual crosstalk in images with strong magnetic fields (ARs)
 - Choose crosstalk weights that optimize the symmetry (antisymmetry) of the Q, U(V) Stokes profiles
 - Deviations from symmetric (antisymmetric) Q, U (V) profiles are indicative of additional crosstalk
 - Iterative process
- Image processing finished! Results:
 - cal processed images after Mueller matrix crosstalk calibration (QS)
 - cals processed images after iterative crosstalk correction (AR)

Part III: Inverting NIRIS Data

Stokes inversions using NIRIS data

- Straight forward problem:
 - Assumptions:
 - Properties of the solar atmosphere are known
 - Four Stokes profiles are unknown
 - Solve the radiative transfer equation (RTE) directly to find Stokes profiles
- Inverse problem:
 - For our Solar observations:
 - Four Stokes profiles are known (measured)
 - Properties of the solar atmosphere are unknown
 - Requires inversion of the RTE

Stokes inversions using NIRIS data

• Radiative transfer equation:

$$\frac{d\vec{l}}{d\tau_c} = \tilde{K}(\vec{l} - \vec{S})$$

- \vec{I} Stokes pseudo-vector: $\vec{I} \equiv [I, Q, U, V]^T$
- τ_c optical depth at continuum wavelength
- $-\vec{S}$ source function vector
- \tilde{K} propagation matrix; accounts for:
 - Absorption withdrawal of same amount of energy from all polarization states
 - Pleochromism differential absorption for the polarization states
 - Dispersion transfer among polarization states
- Mapping between two spaces:
 - measurements + instrumental error \rightarrow physical quantities + uncertainties
- Mapping represents the physics that generates observables from given physical conditions in the object
 - Same observable can yield different results in inversion, depending on assumed underlying physics

Stokes inversions using NIRIS data

- Model atmosphere parameters:
 - *T* Temperature
 - *p* Pressure
 - v_{LOS} Bulk line-of-sight velocity field
 - \vec{B} Magnetic vector field
 - *B* Strength
 - γ
 Inclination with respect to LOS
 - φ Azimuth
 - Ad hoc variables
 - ξ_{mic} Micro-turbulence velocity
 - ξ_{mac} Macro-turbulence velocity
 - *f* Filling factor

- Inversion methods:
 - Local thermodynamic equilibrium (LTE)
 - Weak-field
 - Micro-structured magnetic atmospheres (MISMA)
 - Milne-Eddington (ME)

Summary

- NIRIS targets Zeeman-sensitive lines in the NIR to obtain information about Solar magnetic fields and other quantities of interest
- NIRIS uses dual-beam polarimetry to measure Stokes profiles
 - These profiles are used in Stokes inversion methods to obtain magnetic field vector maps
- Instrumental cross-talk needs to be carefully calibrated to yield accurate Stokes inversion results
 - Mueller calculus
 - Iterative fine correction
- The newly-implemented NIRIS cross-talk calibration method works!

