Dynamics of the Solar Chromosphere

Kevin Reardon

National Solar Observatory

What we're going to talk about

- What are some dominant dynamic behaviors in the chromosphere?
- What are some of the key (ground-based) diagnostics of the chromosphere?
- What are the key parameters that we want measure or derive?
- How does the chromosphere conspire to make this all very confusing?

Emphasis on ground-based diagnostics Flares and polarimetry already covered

The Chromosphere, Our Colorful Friend

The evolving chromosphere

Chromospheric Density Decrease

Balance between magnetic field and gas pressure changes (plasma β):

$$\beta = \frac{2\mu_0 P}{B^2}$$

As pressure decreases, $\beta < 1$, magnetic field dominates over plasma pressure.

Chromospheric Density Decrease

Balance between magnetic field and gas pressure changes (plasma β):

$$\beta = \frac{2\mu_0 P}{B^2}$$

As pressure decreases, $\beta < 1$, magnetic field dominates over plasma pressure.

The dynamic chromosphere

Ca II H (Hinode/SOT)

 $H\alpha$ (DST/IBIS)

04 Oct, 2018

43" = 31 Mm

DKIST/ViSP Ca II K Scan Sequence

49" = 35 Mm

6 Mm

ŝ

DKIST/ViSP Ca II K Fixed Slit Time Series

49" = 35 Mm

DKIST/ViSP Ca II K Fixed Slit Time Series

49" = 35 Mm

Call K Line Wing Intensity (Photosphere)

49" = 35 Mm

35 Mm

49" =

47 min

Call K k2v Intensity (Chromosphere)

49" = 35 Mm

47 min

Ca II K Spectral Time Series

47 minutes

Chromospheric Wave Periods

Molnar et al., 2021

Power Leakage and Dynamic Fibrils (Type I Spicules)

Hansteen et al., 2006

De Pontieu et al., 2004

Power Leakage and Dynamic Fibrils (Type I Spicules)

 $IBIS - H\alpha$

78 arcsec

SDO/AIA – He II 304 Å

22 sec cadence

30 minute duration

12 sec cadence

Power Leakage and Dynamic Fibrils (Type I Spicules)

 $\begin{array}{c} \text{IBIS} \\ \text{H}\alpha \text{ Line Core} \end{array}$

SDO/AIA 304 Å

Type II Spicules

On-disk Counterparts of Type II Spicules

Rouppe van der Voort et al. 2009

0 10 20 30 40 50 60 x [arcsec]

Transverse Motions

Kuridze et al., 2012

Transverse Motions

Morton et al., 2020

Ellerman Bombs

Watanabe et al., 2011

Reardon et al., 2013

IBIS

Umbral Oscillations

ALMA + GST/VIS

Things come down – Coronal Rain

What are our diagnostic tools?

The Chromosphere, Our Colorful Friend

H-alpha 6563 Spectral Scan

Call 8542 Spectral Scan

"Heights" of Formation

Spectral Inversions with IBIS & ALMA

Response Functions

Hofmann, et al., 2023

Chromospheric Confounding

• Heights of formation – corrugation

30 minutes

22 sec cadence

12 sec cadence

30 minute duration

Chromosphere to TR Connection

IBIS He I D₃

78 arcsec

SDO/AIA He II 304 Å

What diagnostics do we have

IRIS Slit Jaw - 1330 Å

0 20 40 60 80 [arcsec]

ALMA Arrives

 Millimeter continuum radiation forms in LTE conditions simple radiative transfer

2) In the Rayleigh-Jeans regime continuum brightness is linearly related to electron temperature

3) More antennas, larger array = higher spatial resolution

Ca 8542 core intensity

Ha 6563 core intensity

ALMA Band 3 = 3 mm

Extended Heights of Formation

Spectral Inversions with ALMA

Spectral Inversions with ALMA - problematic

Inversions with atomic lines only Ca II 8542 + Na D1 5896

Inversions with atomic lines and ALMA Ca II 8542 + Na D1 5896 + Band 3 & 6

Hofmann et al., 2023

COmosphere – Atmospheric Bifurcation

Courtesy Johnathan Stauffer

COmosphere – Atmospheric Bifurcation

solar limb

Penn and Galadaya, 2013

CYRA Observations of CO Dynamics

Stauffer et al., 2024, in prep

Line Wings and Doppler Shifts

Line Wings and Doppler Shifts

DKIST/VBI Meta-mosaic

DKIST/VBI Meta-mosaic

DKIST/VBI Meta-mosaic

Base of fibrils are hot(ter)

IBIS Ca II 8542 Å Core Intensity

Brighter Ca II 8542 ~ hotter

Chae *et al.*, 2020, A&A

See also Kriginsky et al, 2023, A&A

Line-Width Calculation

$\mbox{H}\alpha$ line-width as the key

2 arcsec Gaussian beam

0.2 arcsec resolution

Molnar, *et al*, 2019, ApJ

$H\alpha$ line-width as the key

2 arcsec Gaussian beam

2 arcsec Gaussian convolution

Molnar, et al, 2019, ApJ

Width vs. Velocity Contrast

20 15 0.6 10 Doppler Velocity (km/sec) 0.51 5 -0.8 0 -0.6 0.3 -5 -0.5 -10 -0.4 0.2 0.3 -15 -0.2 -20 1.5 1.3 1.1 1.0 0.9 0.8 0.7 Line Width (Å)

Multiple combinations of broadening and (small) doppler shifts, can lead to same intensity reduction in wings

Wings and Shifts

Chromospheric Confounding

• "Chromospheric" bisectors

Halpha core vs. bisector velocity

IBIS H α Line Width $\Delta t = 3.6 \text{ sec}$ T = 7.5 minutes

$H\alpha$ Line Core

IRIS Slit Jaw - 1330 Å

[arcsec]

$H\alpha$ Line Width

[arcsec]

• Transverse motions – curtains?

ng

Judge et al., 2012

Chromospheric Curtains

Judge et al., 2011