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Description of Polarized radiation

Polarization elipse

• Electric and magnetic field in the radiation beam are 
perpendicular to the direction of propagation 
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Polarization tensor

•  

•  

•  

•

Ex( ⃗r, t) = Axe−i(ωt+ϕx)

Ey( ⃗r, t) = Aye−i(ωt+ϕy)

I =
c

8π
< E*i Ej > , i, j = x, y .

I = (
< E*x Ey > < E*y Ex >
< E*x Ey > < E*y Ey > ) = (

< A2
x > < A*x Ayeiϕ >

< A*x Aye−iϕ > < A2
y > )
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Polarization tensor and Stokes parameters

•    

•  

•  

•  

•

I = (
< E*x Ey > < E*y Ex >
< E*x Ey > < E*y Ey > ) = (

< A2
x > < A*x Ayeiϕ >

< A*x Aye−iϕ > < A2
y > )

I = < A2
x > + < A2

y >

Q = < A2
x > − < A2

y >

U = < AxAy cos(ϕ) >

V = < AxAy sin(ϕ) >

Description of Polarized radiation



30 Polarization of quasi-monochromatic light
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Fig. 3.3. Sketch of linear analyzer–polarizer behavior. Input light has two Cartesian com-
ponents in general. Only the projections of these two components over the optical axis (at
an angle θ to the X axis) are transmitted. The resulting beam from the linear analyzer–
polarizer is completely linearly polarized along the direction of the optical axis.

of the electric field in the orthogonal direction (see Fig. 3.3). The direction of
angle θ is called the optical axis of the linear analyzer. In other words, a linear
analyzer completely transmits any light beam linearly polarized along its optical
axis and completely extinguishes any light beam perpendicularly linearly polar-
ized to its optical axis. Most texts use the term “linear polarizer” for describing this
device. There is no possible confusion because both systems are the same physical
device. The two terms conform to the different roles such a device may play in po-
larization optics: a linear polarizer is an optical system such that, after interaction
with it, light becomes completely linearly polarized. At the exit of such a device,
the new x and y components of the electric field corresponding to an arbitrary
input are

E ′
x = Ex cos θ; E ′

y = Ey sin θ . (3.38)

An optical system is said to be a linear retarder if it imparts a retardance (a
phase lag) δ to one of the orthogonal components of E with respect to the other.
The electric field of the retarded component is colinear with the so-called slow axis
and the other is parallel to the fast axis of the retarder (see Fig. 3.4). If X is the fast
axis, the x and y components of the outgoing electric field are

E ′
x = Ex ; E ′

y = Ey eiδ. (3.39)

Linear analyzer–polarizer behavior. Input light has 
two Cartesian components in general. Only the 
projections of these two components over the optical 
axis (at an angle θ to the X axis) are transmitted. The 
resulting beam from the linear analyzer–polarizer is 
completely linearly polarized along the direction of 
the optical axis. 
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At the exit of the analyzer the light is completely linearly polarized at an angle ✓,
the amplitude of the electric vector being given by

E✓(�) = Ex cos ✓ + Ey sin ✓e
i�

The intensity of the output beam is

Imeas(✓, �) = hE✓(�)E
⇤
✓ (�)i

Imeas(✓, �) = hExE
⇤
x cos

2 ✓+EyE
⇤
y sin

2 ✓+
1

2
ExE

⇤
y sin 2✓e

�i�+
1

2
E⇤

xEy sin 2✓e
i�i

Imeas(✓, �) =
1

2
(I +Q cos 2✓ + U cos � sin 2✓ + V sin � sin 2✓)

• Linear polariser is a device that is totally transparent to the electric field along a given axes (called transmission axes) and totally opaque to the electric field 
along the axes perpendicular to the transmission axes
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Fig. 3.4. A linear retarder shifts the phase of that Cartesian component of the input which
is linearly polarized along its slow axis. In this example, X is the fast axis.

Imagine a quasi-monochromatic plane wave to be transmitted through a linear
retarder and then through a linear analyzer like those described above. Let us study
the (measurable) intensity of the transmitted light beam that will obviously depend
on both θ and δ.

According to Eqs (3.39) and (3.38), at the exit of the analyzer the light is com-
pletely linearly polarized at an angle θ , the amplitude of the electric vector being
given by

Eθ (t; δ) = Ex cos θ + Ey sin θ eiδ. (3.40)

The intensity of the output beam is

Imeas(θ, δ) = ⟨Eθ (t; δ)E∗
θ (t; δ)⟩, (3.41)

or, written in full (but excluding functional dependences),

Imeas(θ, δ) = ⟨Ex E∗
x cos2 θ + Ey E∗

y sin2 θ

+ 1
2

Ex E∗
y sin 2θ e−iδ + 1

2
E∗

x Ey sin 2θ eiδ⟩. (3.42)

A linear retarder shifts the phase 
of that Cartesian component of 
the input.

Introduction to Spectropolarimetry, Del toro Iniesta
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Imagine a quasi-monochromatic plane wave to be transmitted through a linear
retarder and then through a linear analyzer like those described above. Let us study
the (measurable) intensity of the transmitted light beam that will obviously depend
on both θ and δ.

According to Eqs (3.39) and (3.38), at the exit of the analyzer the light is com-
pletely linearly polarized at an angle θ , the amplitude of the electric vector being
given by

Eθ (t; δ) = Ex cos θ + Ey sin θ eiδ. (3.40)

The intensity of the output beam is

Imeas(θ, δ) = ⟨Eθ (t; δ)E∗
θ (t; δ)⟩, (3.41)

or, written in full (but excluding functional dependences),

Imeas(θ, δ) = ⟨Ex E∗
x cos2 θ + Ey E∗

y sin2 θ

+ 1
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At the exit of the analyzer the light is completely linearly polarized at an angle ✓,
the amplitude of the electric vector being given by
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ponents in general. Only the projections of these two components over the optical axis (at
an angle θ to the X axis) are transmitted. The resulting beam from the linear analyzer–
polarizer is completely linearly polarized along the direction of the optical axis.

of the electric field in the orthogonal direction (see Fig. 3.3). The direction of
angle θ is called the optical axis of the linear analyzer. In other words, a linear
analyzer completely transmits any light beam linearly polarized along its optical
axis and completely extinguishes any light beam perpendicularly linearly polar-
ized to its optical axis. Most texts use the term “linear polarizer” for describing this
device. There is no possible confusion because both systems are the same physical
device. The two terms conform to the different roles such a device may play in po-
larization optics: a linear polarizer is an optical system such that, after interaction
with it, light becomes completely linearly polarized. At the exit of such a device,
the new x and y components of the electric field corresponding to an arbitrary
input are

E ′
x = Ex cos θ; E ′

y = Ey sin θ . (3.38)

An optical system is said to be a linear retarder if it imparts a retardance (a
phase lag) δ to one of the orthogonal components of E with respect to the other.
The electric field of the retarded component is colinear with the so-called slow axis
and the other is parallel to the fast axis of the retarder (see Fig. 3.4). If X is the fast
axis, the x and y components of the outgoing electric field are

E ′
x = Ex ; E ′

y = Ey eiδ. (3.39)
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Imagine a quasi-monochromatic plane wave to be transmitted through a linear
retarder and then through a linear analyzer like those described above. Let us study
the (measurable) intensity of the transmitted light beam that will obviously depend
on both θ and δ.

According to Eqs (3.39) and (3.38), at the exit of the analyzer the light is com-
pletely linearly polarized at an angle θ , the amplitude of the electric vector being
given by

Eθ (t; δ) = Ex cos θ + Ey sin θ eiδ. (3.40)

The intensity of the output beam is

Imeas(θ, δ) = ⟨Eθ (t; δ)E∗
θ (t; δ)⟩, (3.41)

or, written in full (but excluding functional dependences),

Imeas(θ, δ) = ⟨Ex E∗
x cos2 θ + Ey E∗

y sin2 θ
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From the definition of the Stokes parameters (3.15), and assuming that κ = 1, we
easily obtain:

⟨Ex E∗
x ⟩ = 1/2(I + Q),

⟨Ey E∗
y⟩ = 1/2(I − Q),

⟨Ex E∗
y⟩ = 1/2(U + iV ),

⟨E∗
x Ey⟩ = 1/2(U − iV ).

(3.43)

Hence, Eq. (3.42) can be recast in the useful form

Imeas(θ, δ) = 1
2
(I + Q cos 2θ + U cos δ sin 2θ + V sin δ sin 2θ). (3.44)

We have found that the measured intensity of the output beam is a linear combi-
nation of the four Stokes parameters of the input beam. Hence, by varying θ and δ

one can easily determine I , Q, U , and V . Specifically,

I = Imeas(0, 0) + Imeas(π/2, 0),

Q = Imeas(0, 0) − Imeas(π/2, 0),

U = Imeas(π/4, 0) − Imeas(3π/4, 0),

V = Imeas(π/4, π/2) − Imeas(3π/4, π/2).

(3.45)

Note that Stokes Q, U , and V result from differences in two intensity measure-
ments for which the optical axis of the analyzer has been rotated by π/2. For
example, that light beam for which only Imeas(0, 0) is different from zero is in a
polarization state orthogonal to the other beam, for which only Imeas(π/2, 0) is dif-
ferent from zero. As commented on in the previous section, the two orthogonal
states have anti-parallel polarization vectors.

Let us digress a little on the physical meaning of Eqs (3.45). Let us consider
the most general input, a partially polarized beam, and explore what is going on
after the measurements described in Eqs (3.45). According to Eq. (3.30), the in-
put beam is always the sum of a natural beam plus a totally polarized beam. Now,
the natural component can be decomposed into two orthogonally polarized beams
[Eq. (3.33)], one of which will be completely transmitted and the other completely
absorbed or reflected. Fifty percent of the intensity of the natural component, then,
is contributed to every measurement. Since the equations for Q, U , and V are
differences, such a natural component cancels out for all three parameters and con-
tributes only to Stokes I – the total intensity of the input beam. Hence, polarization

Introduction to Spectropolarimetry, Del toro Iniesta
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3. INSTRUMENTATION AND ANALYSIS TECHNIQUES

tion (where the frames of Q and U are rotated by 45�); V is the degree of circular

polarisation. In other words,

I = � +  or $ + l etc , (3.1)

Q = l � $ , (3.2)

U = - � % , (3.3)

V = � �  , (3.4)

where � and  represent right and left circularly polarised light, $ and l represent

linearly polarised light in the 0� and 90� directions, and% and- represent polarisation

in the 45� and 135� directions. In a spectral line, the state of polarisation varies as

a function of wavelength, so the Stokes parameters are a function of wavelength, i.e.,

I (�), Q(�), U (�), V (�).

Figure 3.2 shows examples of Stokes I, Q, U, and V profiles under various cir-

cumstances. In the upper left panel, magnetic field strength, inclination angle, and

azimuthal angle are all zero. This leads to only a Stokes I profile observed. When the

magnetic field strength, B, is increased along the LOS only (i.e. inclination, �, and

azimuthal, �, angles are still both zero), the V profile is also observed. The upper right

panel shows this for a field strength of 1500 G, with a typical two-lobe structure for

Stokes V and the I profile beginning to split due to the presence of the magnetic field.

When field inclination is at 90� (and still a 1500 G field), as in the lower left panel,

Stokes V disappears, however a typical Stokes Q profile is now observed. Finally, when

the azimuthal angle is at 45� (with field strength at 1500 G and inclination at 90�),

the Stokes Q profile disappears and only U profile is observed along with the total

intensity I. The two-lobe structure of the V profile, and three-lobe structures of the Q

and U profiles can be explained by the Zeeman e↵ect, which will be discussed in the

next section.

70

• These are modulations 

• We measure them to reconstruct Stokes I/Q/U/V



•Light is polarised due to a anisotropic physical state in the light source or media 
through which the light propagates


•Magnetic field - Zeeman affect


•Electric field - Stark affect


•Scattering polarisation


•Scattering polarisation + magnetic field (Hanle affect) 

• Impact polarisation


•Atomic polarisation


Polarization of the light
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Muller Matrix

• Influence of any medium/material, physical element (telescope optic, mirrors, lens …) 
on polarized radiation can be described through 4 × 4 matrices, called Muller matrices

• Polarization calibrations are based on determination of telescopes' Muller matrix.

4.5 The Mueller matrix and some of its properties 45

The reasons for such a notation are at least four-fold: (1) the total intensity
of a light beam is considered as a scaling factor; (2) the polarization vector is
explicitly used, hence stressing that it belongs to the Poincaré sphere; (3) since
p must belong to the Poincaré sphere, transformations of the polarization state
of light are seen as transformations of three-vectors, i.e., geometrical rotations,
contractions, or dilatations; (4) the algebraic manipulations of IR4 elements and
transformations are simplified to those of IR3,which are easier to handle.

4.4 Transforming the polarization state of light

Since every linear transformation in IR4 can be described by a 4 × 4 matrix, any
linear change in the polarization state of light is represented by a given 4×4 matrix,
the so-called Mueller matrix,

I′ = MI, (4.28)

or, more specifically,
⎛
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and, in block component notation:

g
(

1
p′

)

= M00

(

1 hT

v N

)(

1
p

)

, (4.30)

where g is the gain or transmittance of the system, that is, the ratio between output
and input intensities,

g ≡ I ′

I
≥ 0, (4.31)

and the identification of h, v, and N with the matrix elements of Eq. (4.29) is
straightforward after Eq. (4.27). Note that in fact g = g( p); i.e., the transmittance
depends on the input polarization state.

4.5 The Mueller matrix and some of its properties

Not every four-vector is a physically meaningful Stokes vector. Conditions (3.19)
and (3.20) must be fulfilled. Consequently, not every 4 × 4 matrix can be a phys-
ically meaningful Mueller matrix. To meet this definition a 4 × 4 must transform
physical Stokes vectors onto physical Stokes vectors or, equivalently, Poincaré
vectors onto Poincaré vectors, as illustrated in Fig. 4.3. This physical condition
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• Principal quantum number, n 
• Orbital angular momentum, l (l=0,1,2,3,..,n-1; s,p,d,f) 
• Spin angular momentum, s  (s=±1/2 for electrons, 1,-1 for photons) 
• Total angular momentum, j=l+s (|l-s|≤j≤|l+s|) 
• Total angular momentum for multi-electron atoms, J=L+S (L=∑li, S=∑Si, |L-S|≤J≤|L+S|) 
• Components of the total angular momentum (J) in the direction of the external magnetic/

electric field, M (2J+1) 
• Atomic state is described as: 

Each bound energy level is characterised by four quantum numbers:
Atomic structure

|lsjm⟩ 

8.3 The Zeeman effect 129

If the atomic conditions are close to those of LS coupling, the observables L2, S2,
J2, and Jz turn out to form a complete set of commuting operators, so that their as-
sociated quantum numbers l, s, j , and m, respectively, are good quantum numbers
and states |ls jm⟩ characterized by them are eigenvectors of all four observables:

L2|ls jm⟩ = h̄2 l(l + 1) |ls jm⟩,
S2|ls jm⟩ = h̄2 s(s + 1) |ls jm⟩,
J2|ls jm⟩ = h̄2 j ( j + 1) |ls jm⟩,
Jz|ls jm⟩ = h̄ m |ls jm⟩

(8.24)

where h̄ is Planck’s constant, h, divided by 2π .
All these quantum states are also energy eigenstates because, in the absence

of an external field, the Hamiltonian, H0, also commutes with the total angular
momentum as a consequence of its rotational invariance. Remarkably, all quantum
states with quantum number, j , have the same eigenvalue, E j ,

H0 |ls jm⟩ = E j |ls jm⟩, (8.25)

regardless of m. We say that the state is (2 j + 1)-fold degenerate, or that the
energy level has 2 j + 1 sub-levels each characterized by the m quantum number
(m = − j, − j + 1, . . . , 0, . . . , j − 1, j).

8.3 The Zeeman effect

If an external magnetic field is applied to the system, a new Hamiltonian term
must be added to H0 to account for the interaction energy between the atom and
B. Assume that this new term is just a small perturbation to the energy levels
of the atom in the absence of the magnetic field. That is, the matrix elements of
the new term, HB , are supposed to be small when compared with those of H0. It
is then necessary just to evaluate those HB matrix elements and add them to the
eigenvalues of the unperturbed system.

If the magnetic field is homogeneous within the spatial domain of atomic dimen-
sions, the magnetic Hamiltonian is given by

HB = µ · B + O(B2), (8.26)

where µ is the atom’s intrinsic magnetic moment†

µ = µ0(J + S) (8.27)

and the term O(B2) is the so-called diamagnetic term (of the order of B2, but not

† We assume that the spin gyromagnetic ratio is gs = 2. In fact, experimental measurements and quantum
electrodynamics give gs = 2 [1 + α/π + O(α/π)2] ≃ 2.0023192, where α is the fine structure constant.
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explicitly written), which is perfectly negligible for our purposes when dealing with
small enough magnetic field strengths like those usually produced in the laboratory
or found in the Sun and most stars.†

The quantity µ0 is the Bohr magneton,

µ0 ≡ e0h̄
2mc

= hνL

B
= 9.27 × 10−21 erg G−1. (8.28)

The diagonal terms of HB turn out to be

⟨ls jm|HB |ls jm⟩ = mgµ0 B = mg hνL, (8.29)

where g is the Landé factor of the level. In LS coupling, the Landé factor is given
by

gL S = 3
2

+ s(s + 1) − l(l + 1)

2 j ( j + 1)
(8.30)

when j ̸= 0. Note that when j = 0 the Landé factor loses its meaning since m = 0
and the magnetic perturbation is zero.

The non-diagonal terms are not zero, however. HB is diagonal for all quantum
numbers except for j . The total angular momentum is no longer an invariant of the
motion, although Jz is still invariant.

⟨ls jm|HB |l ′s ′ j ′m ′⟩ = −δlsm j−1,l ′s′m′ j ′

×
[

( j2 − m2)( j + l + s + 1)( j + l − s)( j + s − l)(l + s − j + 1)

4 j2(2 j − 1)(2 j + 1)

]

hνL.

(8.31)

Fortunately, these non-diagonal terms are negligible with respect to the diagonal
ones for the range of weak magnetic fields we are dealing with, so that we can still
consider J as an approximate motion invariant and the states |ls jm⟩ as eigenvectors
of the Hamiltonian:

(H0 + HB) |ls jm⟩ = (E j + mg hνL) |ls jm⟩. (8.32)

Therefore, the degeneracy of the energy level j has been broken up by the
presence of the magnetic field into 2 j + 1 components whose shifts in frequency
(energy) are proportional to the (magnetic) quantum number m and to the Larmor
frequency, νL (see Fig. 8.3). The adjective “magnetic” applied to quantum number
m comes from the customary selection of the third component of the total angular
momentum along the magnetic field direction. Hence, the Jz eigenvalue turns out

† Very strong magnetic fields have been reported on white dwarfs and pulsars, for which the diamagnetic term
might be needed. The order of magnitude of O(B2) with respect to µ . B is the same as that of the latter
(paramagnetic term) with respect to the unperturbed Hamiltonian, H0.
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The presence of the magnetic field breaks degeneracy and an atomic level of total angular 
momentum J is split into (2J + 1) magnetic sublevels, where J = L + S (L is orbital angular 
momentum and S is spin angular momentum)
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3.1 Solar Magnetic Field Observations

Figure 3.3: Depiction of a normal Zeeman triplet, with the splitting of the line into three
components due to the presence of a magnetic field. Transitions with �ml = 0 are called
⇡ transitions, and transitions with �ml = ±1 are called � transitions (Majumdar, 2000).

angular momentum, respectively. The wavelength displacement of the spectrum is thus,

�� �0 =
e

4⇡mec
g⇤�2B , (3.6)

where �0 is the original wavelength, me and e are the mass and charge on the electron,

c is the speed of light , g⇤ is the Landé g factor for the transition3.2, and B is the

magnetic field strength (Thomas & Weiss, 2008).

Relating the Stokes parameters back to the Zeeman e↵ect, as in Figure 3.4, for

3.2g⇤ = guMu � glMl, where M the additional magnetic quantum number and subscripts ‘u’ and ‘l’
denote the upper and lower levels of the transition

73

g = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)

E = E0 − (μ ⋅ B), μ =
1
2 ( e

m
h

2π
gM)
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First extraterrestrial magnetic field

William Huggins (1824 – 1910) 

The lines of the  FRAUNHOFER appeared to be stronger and thicker in 
the spectrum of the umbra (1868)

Norman Lockyer (1836 – 1920) 

* Lockyer, J. Norman. 1867 ,Spectroscopic Observations of the Sun. Astronomical register, vol. 5, pp.38-39

All the absorption-bands, were visible in the spectrum of the 
spot; they moreover appeared thicker where they crossed the spot 

spectrum (1867) * .



Young 1883

The Zeeman effect

• Line splitting observed in 1870  

• Zeeman effect discovered in 1896

Broadening and reversal of Na I D1 k 5889.950 Å and Na I D2 k 5895.924 Å 



• Line splitting observed in 1870  

• Zeeman effect discovered in 1896 

• Discovery of the magnetic field in sunspots 
in 1908 (3000 G in sunspot umbrae) (Hale 
1908) 

• G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. 
Joy, The Magnetic Polarity of Sun-Spots. 
Astrophys. J. 49, 153–178 (1919)

Stenflo 2015

2 J.O. Stenflo

Fig. 1 George Ellery Hale and his dicovery of magnetic fields in sunspots through observations of the Zee-
man effect. At the place where the spectrograph slit crosses a sunspot the spectral lines get split in polarized
components. The magnitude of the splitting is proportional to the magnetic field strength, while the polariza-
tion state (circular or linear) reveals the orientation of the field.

Sunspots thus became the gateway to the exploration of cosmic magnetic fields, in-
cluding the origin of the fields and their role in astrophysical plasmas. We now know that
magnetic fields govern most cosmic variability on intermediate time scales and pervade all
cosmic plasmas, generating structuring, thermodynamic effects, and instabilities. Measure-
ments of the Sun’s magnetic field has guided the development of magnetohydrodynamics
and dynamo theories.

The pioneering work by Hale and his team led to the discovery of Hale’s polarity law
(the law that governs the E-W orientation of the sunspot polarities with respect to solar
hemisphere and 11-yr cycle), which showed that the magnetic cycle is 22 yr (the Hale cycle),
twice the length of the sunspot cycle (Hale et al. 1919). Another fundamental discovery in
the same paper is Joy’s law, which tells that the polarity orientation of bipolar magnetic
regions deviates systematically (in a statistical sense) from the E-W direction: the orientation
is tilted so that the leading part of the region (with respect to the direction of solar rotation)
is closer to the equator than the following part. Hale’s and Joy’s laws serve as observational
cornerstones of solar dynamo theory. The Sun’s dynamo can be seen as a prototype for all
cosmic dynamos.

2 The enigmatic general magnetic field of the Sun

Soon after his discovery of magnetic fields in sunspots Hale wanted to explore the non-spot
“background field”, the so-called “general” magnetic field of the Sun, which he believed to
be a global dipole based on the appearance of the solar corona at eclipses. The observational
technique was to place a grid of mica strips across the spectrograph slit, so that one gets
an alternating sequence of left- and right-handed circularly polarized spectra. In the pres-
ence of a magnetic field there would be a relative line displacement between the opposite
polarization states.

The Zeeman effect
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from field intensities as low as 1 milligauss to many thou-
sands of gauss. The second part of the article shows some
recent applications in solar physics with emphasis on the
hidden magnetic fields of the photosphere, chromosphere
and corona.

2. GENERATION OF POLARIZED RADIATION

It is suitable to begin by recalling that the state of polar-
ization of a quasi-monochromatic beam of electromag-
netic radiation can be conveniently characterized in terms
of four quantities that can be measured by furnishing our
telescopes with a polarimeter. Such observables are the
four Stokes parameters (I, Q, U, V ), which were formu-
lated by Sir George Stokes in 1852 and introduced into
astrophysics by the Nobel laureate Subrahmanyan Chan-
drasekhar in 1946. The Stokes I(λ) profile represents
the intensity as a function of wavelength, Stokes Q(λ)
the intensity difference between vertical and horizontal
linear polarization, Stokes U(λ) the intensity difference
between linear polarization at +45◦ and −45◦, while
Stokes V (λ) the intensity difference between right- and
left-handed circular polarization (cf. Born &Wolf 1994).
Note that the definition of the StokesQ andU parameters
requires first choosing a reference direction for Q > 0 in
the plane perpendicular to the direction of propagation.

Let us now review the most important mechanisms that
induce (and modify) polarization signatures in the spec-
tral lines that originate in stellar atmospheres: the Zee-
man and Paschen-Back effects, scattering processes and
the Hanle effect.

2.1. The Zeeman effect

As illustrated in Figure 1, the Zeeman effect requires the
presence of a magnetic field which causes the atomic
and molecular energy levels to split into different mag-
netic sublevels characterized by their magnetic quantum
numberM (Condon & Shortley 1935). Each level of to-
tal angular momentum J splits into (2J + 1) sublevels,
the splitting being proportional to the level’s Landé fac-
tor, gJ , and to the magnetic field strength. As a re-
sult, a spectral line between a lower level with (Jl, gl)
and an upper level with (Ju, gu) is composed of several
individual components whose frequencies are given by

νJuMu
JlMl

= ν0 + νL(guMu − glMl), where ν0 is the fre-
quency of the line in the absence of magnetic fields and
νL = 1.3996×106B is the Larmor frequency (with B
the magnetic field strength expressed in gauss). In par-
ticular, a line transition with Jl = 0 and Ju = 1 has
three components (see Fig. 1): one π component cen-
tered at ν0 (or at λ0), one σred component centered at
ν0 − guνL (or at λ0 + gu∆λB), and one σblue compo-
nent centered at ν0 + guνL (or at λ0 − gu∆λB), where
∆λB = 4.6686×10−13λ2

0B (with λ0 in Å and B in
gauss).

The important point to remember is that the polarization
signals produced by the Zeeman effect are caused by the
wavelength shifts between the π (∆M = Mu −Ml = 0)
and σb,r (∆M = ±1) transitions. Such wavelength shifts
are also the physical origin of the spectral line polariza-
tion induced by the Paschen-Back effect discussed below
in Section 2.5, since the only difference with respect to
the linear Zeeman effect theory considered here lies in
the calculation of the positions and strengths of the vari-
ous π and σ components.

Figure 1. The oscillator model for the Zeeman effect indi-
cating the characteristic shapes of the circular and linear
polarization profiles as generated locally via the emission
process. It is important to note that the Stokes V (λ) pro-
file changes its sign for opposite orientations of the mag-
netic field vector, while the Stokes Q(λ) profile reverses
sign when the transverse field component is rotated by
±90◦.

The Zeeman effect is most sensitive in circular polar-
ization (quantified by the Stokes V parameter), with a
magnitude that for not too strong fields scales with the
ratio between the Zeeman splitting and the width of the
spectral line (which is very much larger than the natu-
ral width of the atomic levels!), and in such a way that
the emergent Stokes V (λ) profile changes its sign for op-
posite orientations of the magnetic field vector. This so-
called longitudinal Zeeman effect responds to the line-
of-sight component of the magnetic field. Accordingly, if

Trujillo Bueno (2003)
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3. INSTRUMENTATION AND ANALYSIS TECHNIQUES

tion (where the frames of Q and U are rotated by 45�); V is the degree of circular

polarisation. In other words,

I = � +  or $ + l etc , (3.1)

Q = l � $ , (3.2)

U = - � % , (3.3)

V = � �  , (3.4)

where � and  represent right and left circularly polarised light, $ and l represent

linearly polarised light in the 0� and 90� directions, and% and- represent polarisation

in the 45� and 135� directions. In a spectral line, the state of polarisation varies as

a function of wavelength, so the Stokes parameters are a function of wavelength, i.e.,

I (�), Q(�), U (�), V (�).

Figure 3.2 shows examples of Stokes I, Q, U, and V profiles under various cir-

cumstances. In the upper left panel, magnetic field strength, inclination angle, and

azimuthal angle are all zero. This leads to only a Stokes I profile observed. When the

magnetic field strength, B, is increased along the LOS only (i.e. inclination, �, and

azimuthal, �, angles are still both zero), the V profile is also observed. The upper right

panel shows this for a field strength of 1500 G, with a typical two-lobe structure for

Stokes V and the I profile beginning to split due to the presence of the magnetic field.

When field inclination is at 90� (and still a 1500 G field), as in the lower left panel,

Stokes V disappears, however a typical Stokes Q profile is now observed. Finally, when

the azimuthal angle is at 45� (with field strength at 1500 G and inclination at 90�),

the Stokes Q profile disappears and only U profile is observed along with the total

intensity I. The two-lobe structure of the V profile, and three-lobe structures of the Q

and U profiles can be explained by the Zeeman e↵ect, which will be discussed in the

next section.
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from field intensities as low as 1 milligauss to many thou-
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signals produced by the Zeeman effect are caused by the
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tion induced by the Paschen-Back effect discussed below
in Section 2.5, since the only difference with respect to
the linear Zeeman effect theory considered here lies in
the calculation of the positions and strengths of the vari-
ous π and σ components.

Figure 1. The oscillator model for the Zeeman effect indi-
cating the characteristic shapes of the circular and linear
polarization profiles as generated locally via the emission
process. It is important to note that the Stokes V (λ) pro-
file changes its sign for opposite orientations of the mag-
netic field vector, while the Stokes Q(λ) profile reverses
sign when the transverse field component is rotated by
±90◦.

The Zeeman effect is most sensitive in circular polar-
ization (quantified by the Stokes V parameter), with a
magnitude that for not too strong fields scales with the
ratio between the Zeeman splitting and the width of the
spectral line (which is very much larger than the natu-
ral width of the atomic levels!), and in such a way that
the emergent Stokes V (λ) profile changes its sign for op-
posite orientations of the magnetic field vector. This so-
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of-sight component of the magnetic field. Accordingly, if
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Polarization observations with DKIST

• ViSP, DL-NIRSP, Cryo-NIRSP, VTF

• Modulation states are measured with rotating retarders/liquid crystals

• Dual beam polarimetry is used - analyzer is polarizing beam splitter

• Minimizes cross-talks

• Maximize S/N by using all available lights

Measurements



Polarization observations with DKIST

• Combines two beams

• Convert modulation states into Stokes vector

• Removes polarizations induced by the telescope optics/instruments

Calibration



Polarization observations 
with DKIST

• DKIST use polarimetric calibration unit

• Placed near primary focus just after 
secondary mirror

• Has different optical elements 
including polarizers and  retarders

• Modulation states are measured and 
analyzed in Coulde lab level

• Polarization model (Muller matrix, 
telescope model etc)



SDO/HMI LoS magnetogram
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SDO/HMI LoS magnetogram cut out [G]
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• ViSP: Fe I 6301/6302 Å, and Ca II 8542 Å

• Slit width: 0.214”

• Step size: 0.219” step 

• Full map time:  ~27 min

• Target: Plage region near  μ ~ 0.8

• 4 raster scan at 4 adjacent pointings

ViSP: Fe I 6301/6302

The noise level of the averaged Stokes 
Q, U, & V profiles: 4.4×10−4 Ic and 
3.7×10−4 Ic
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Polarized Radiative Transfer

d
dτ

I
Q
U
V

=

ηI ηq ηU ηV
ηQ ηI ρV −ρU
ηU −ρV ηI ρQ
ηV ρU −ρQ ηI

I − S
Q
U
V

Introduction to Spectropolarimetry, Del toro Iniesta

•ηI  -  absorption coeficient

•ηQ,U,V  - describe the coupling of the intensity I 
with Q, U and V

•𝜌Q,U,V  - conversion terms (dispersion 
coefficients) between Q, U and V due to 
magneto-optical effects

B→

𝜃

𝜑

LoS



Polarized Radiative Transfer
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116 The radiative transfer equation

in the outermost boundary of the medium (z0), where the observer is located. If,
according to Eq. (6.16), we write the integrand of Eq. (7.41) as 1/ℓcont, the inter-
pretation of the optical depth is natural: τc represents the (dimensionless) number
of mean free paths of continuum photons between the outermost boundary and
point z.

Using τc as the independent variable, the RTE can be written as

dI
dτc

= K (I − S), (7.42)

where we have kept the symbol K for the propagation matrix; that is, from now on

K = 11 + η0!. (7.43)

Thus, the matrix elements of K ought to be recast in the following form:

ηI = 1 + η0

2

{

φ0 sin2 θ + 1
2

[φ+1 + φ−1] (1 + cos2 θ)

}

,

ηQ = η0

2

{

φ0 − 1
2

[φ+1 + φ−1]
}

sin2 θ cos 2ϕ,

ηU = η0

2

{

φ0 − 1
2

[φ+1 + φ−1]
}

sin2 θ sin 2ϕ,

ηV = η0

2
[φ−1 − φ+1] cos θ,

(7.44)

and

ρQ = η0

2

{

ψ0 − 1
2

[ψ+1 + ψ−1]
}

sin2 θ cos 2ϕ,

ρU = η0

2

{

ψ0 − 1
2

[ψ+1 + ψ−1]
}

sin2 θ sin 2ϕ,

ρV = η0

2
[ψ−1 − ψ+1] cos θ .

(7.45)

7.7 Radiative transfer through isotropic media

Let us here consider a particularly interesting case. Let us assume that the medium
is isotropic. Then, according to the discussions of Sections 6.2 and 7.4, we have
ηQ = ηU = ηV = ρQ = ρU = ρV = 0, because φα(u0,α, aα) = φ(u0, a), ∀ α =
+1, 0, −1 and ψα(u0,α, aα) = ψ(u0, a), ∀ α = +1, 0, −1. The propagation matrix

Introduction to Spectropolarimetry, Del toro Iniesta

•𝜃 & 𝜑 are the inclination and azimuth of the 
magnetic field 

•ϕ0,+1, -1 components are computed from Voight 
function that includes Doppler motion and 
Zeeman splitting

• Azimuthal angle 𝜑 appears as sin(2𝜑) and 
cos(2𝜑) 

• The azimuth is determined by 
observations of Q,U only to within 1800.

B→

𝜃

𝜑

LoS



How we can infer magnetic field from Stokes profiles
• We need to solve a very complex radiative transfer problem under LTE/NLTE

 Inversions:
Fit the observed Stokes profiles using inversion 
algorithms

The ionization equilibrium, statistical equilibrium, 
and radiative transfer equations are solved 
numerically to synthesize the Stokes profiles 

Guess Atmosphere 
[T(z), B(z), v(z), n(z) 

Observed Spectra

Synthetic Spectra
Simulate

CompareNon-acceptable fit

Model atmosphere

Acceptable fit



Inversion of  Fe 6301 & 6302 with DeSire code

• LTE inversion code SIR with non-LTE radiative transfer solver RH 
(Ruiz Cobo & del Toro Iniesta 1994, Uitenbroek 2001) 

• The multilevel non-LTE radiative transfer problem using analytical 
response functions 

• Plane-parallel geometry

• log τ = −1



Inversion of  Ca II 8542 Å with DeSire code
14 Kuridze et al.

Figure 9. The top panels show the ViSP images in the Ca II 8542 Å Stokes I line core and Stokes V at �� = �0.2 Å. The
DeSIRe output showing the temperature, LoS magnetic field, mass density and LoS velocity maps averaged over the interval
between log ⌧ = �2.8 and� 4.3 are presented in the middle and bottom panels.

the VBI data (Figure 4). The analysis shows that the dark, fibrillar structures seen in the composite CHROMIS data312

have both increased line width and line depth with respect to the average QS profile (Figure 5), explaining why these313

features appear as high-contrast dark structures relative to the background in the VBI H� image.314

4.2. Opacity broadening of the fibrils H� line width315

The line broadening of chromospheric fine structures is a well-known phenomenon that has been reported in many316

observations (see the reviews by Beckers 1972; Tsiropoula et al. 2012). However, establishing the exact reasons for317

the line broadening remains a central problems of chromospheric research. The increased line width can be caused by318

increased local temperatures produced by thermal and nonthermal heating processes, nonthermal motions, turbulence319

and MHD waves. These mechanisms have been investigated in recent decades using both advanced theoretical modeling320

and high-resolution, multi-instrument observations but a definitive explanation still eludes us.321



Zeeman splitting of atomic levels & lines

�� Transitions between Transitions between 
Zeeman split upper Zeeman split upper 
and lower atomic levels and lower atomic levels 
lead to spectral lines lead to spectral lines 
that are split in that are split in 
wavelengthwavelength

�� Transitions are allowed Transitions are allowed 
between levels with    between levels with    
∆∆J J = 0, = 0, ±±1   &               1   &               
∆∆MMJJ = 0 (= 0 (ππ)), , ±±1 (1 (σσbb, , σσrr) ) 
(for the most common (for the most common 
types of transitions: types of transitions: 
electric dipole electric dipole 
radiation)radiation)
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Week-field Approximation  
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Kuridze, D., et al. 2019, ApJ, 874, 126



Panel a and b show the SST images in the Ca ii 8542 Å intensity (Stokes I) at line core and circular polarization (Stokes V) at line wing for the flare coronal loops. 
Panel c and d show a map of the LOS magnetic field together with histogram showing the distribution of the LOS magnetic fields for 3 different regions (1, 2, 3). 
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X8.2 flare coronal loops on 10 September 2017 observed by SST
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The COG is defined as the centroid of its residual intensity profiles:

�COG =

R
�(Icont � I)d�R
(Icont � I)d�

vLOS =
c(�0 � �COG)

�0

The LOS strength of magnetic field

BLOS =
�+ � ��

2

4⇡mc

egL�2
0

�± =

R
�(Icont � (I ± V ))d�R
(Icont � (I ± V ))d�

Uitenbroek  2003

Center of Gravity (COG) method 



Summary

SDO/HMI LoS magnetogram
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SDO/HMI LoS magnetogram cut out [G]
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• The most powerful magnetic diagnostics of solar and astrophysical plasmas are 
based on measurements of the polarized states of light described by the Stokes 
profiles (I, Q, U, V ) 

• Measurement of magnetic field in the photosphere and chromosphere is mainly 
based on Zeeman effect 

• Simple techniques such as weak-field/strong-field approximation, center-of-gravity 
can be used to produce maps of the magnetic field components


