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[1] We have been making sustained observations of the earthshine from Big Bear Solar
Observatory in California since late 1998. We also have intermittent observations from
1994–1995. We have reinvigorated and modernized a nearly forgotten way of measuring
the Earth’s albedo, and hence its energy balance, previously studied by A. Danjon and his
followers for about 25 years early in the last century using their observations of the
earthshine from France. This is the first in a series of papers covering observations and
simulations of the Earth’s reflectance from photometric and spectral observations of the
Moon. Here, we develop a modern method of measuring, instantaneously, the large-scale
reflectance of the Earth. From California we see the Moon reflecting sunlight from the
third of the Earth to the west of us in our evening (before midnight, which is during the
Moon’s rising phase) and from the third of the Earth to our east in our morning (after
midnight, which is during the Moon’s declining phase). We have precisely measured the
scattering from the Moon as a function of lunar phase, which enables us to measure, in a
typical night’s observations, the Earth’s reflectance to an accuracy of 2.0% (equivalent
to measuring the Earth’s emission temperature to �0.8 K). We have also identified the
lunar phase function as the major source of discrepancy between Danjon’s estimates of the
albedo and more recent measurements. The albedo is due to the interplay of cloud cover
and different landscapes. INDEX TERMS: 0320 Atmospheric Composition and Structure: Cloud

physics and chemistry; 0325 Atmospheric Composition and Structure: Evolution of the atmosphere; 1610

Global Change: Atmosphere (0315, 0325); 1694 Global Change: Instruments and techniques; 3309
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1. Introduction

[2] It is important to know whether there is an on-going
global change in the Earth’s climate. To answer this, one
needs precise, global/integrated measures of relevant quan-
tities. The Earth’s climate is driven by the net sunlight
deposited in the terrestrial atmosphere, and so, is critically
sensitive to the solar irradiance and the Earth’s albedo.

Precise measurements of the solar irradiance have been
made by various satellites and by using ground-based
proxies (for a review, see Fröhlich [2000, and references
therein]). The spectrum of efforts to determine the Earth’s
global albedo is not so rich. There have been efforts using
systems of satellites [Buratti et al., 1996, and references
therein], but virtually no efforts from the ground. Nonethe-
less, the Earth’s energy balance is determined in large part
by its global albedo: the fraction of the incident sunlight that
is directly reflected back into space without altering the
internal energy budget of the atmosphere. The Earth’s
surface, aerosols in the atmosphere and clouds all reflect
some of the incoming solar short-wavelength radiation,
preventing that energy from warming the planet. Further,
about 13% of the solar radiation incident on the atmosphere
is Rayleigh scattered, half of this reaching the Earth’s
surface as diffuse radiation and the other half being returned
to space [Houghton, 2002]. Short-wavelength radiation,
usually defined as having wavelengths between 0.15 and
4.0 mm, includes about 99% of the Sun’s radiation; of this
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energy, 46% is infrared (>0.74 mm), 9% is ultraviolet (<0.4
mm) and the remaining 45% is visible, with wavelengths
between 0.4 and 0.74 mm [Liou, 2002]. A significant portion
of the solar energy is absorbed by the Earth (�70%), where
it drives terrestrial phenomena before being radiated back
into space through the atmospheric window as infrared
radiation peaking at about 10 mm.
[3] The power going into the Earth’s climate system is

Pin ¼ CpR2
E 1� Að Þ; ð1Þ

where C is the solar constant (adjusted for the Sun-Earth
distance), RE is the Earth’s radius and A is the short-
wavelength Bond albedo (the amount of sunlight reflected
back to space by the atmosphere and surface of the Earth).
Subsequently, this incoming power is reradiated back into
space at long wavelengths, where

Pout ¼ 4pR2
EsT

4
E ; ð2Þ

where s is the Stefan-Boltzmann constant and TE (�255 K)
is the effective temperature of the Earth, a physical averaged
long-wave emission temperature at about 5.5 km height in
the atmosphere (depending on wavelength and cloud cover
altitudes from 0 to 30 km contribute to this emission). One
can relate that temperature to a more global climate
parameter like the globally averaged surface temperature
Ts. With this parameter, one must introduce a greenhouse
forcing parameter G[W/m2] defined as the difference
between the emission at the top of the atmosphere and the
surface. The forcing G increases with increasing concentra-
tion of greenhouse gases. After Raval and Ramanathan
[1989], we can define the normalized greenhouse effect g,
with g = G/sTs

4. Then the outgoing power can be written as:

Pout ¼ 4pR2
Es 1� gð ÞT4

s : ð3Þ

[4] If the planet is in radiative equilibrium, Pin = Pout,
then we have

T4
s ¼ C

4s 1� gð Þ 1� Að Þ: ð4Þ

This means that the Bond albedo, together with solar
irradiance and the greenhouse effect, directly controls the
Earth’s temperature. Global warming would result if either
A decreased or g increased. The possibility of increasing
greenhouse forcing due to an anthropogenic increase of
atmospheric CO2 over the past century, has been treated in
detail in scientific literature over the past few decades
[Intergovernmental Panel on Climate Change, 1995;
Houghton, 2002, and references therein]. The scope of this
paper, however, is the Earth’s short-wavelength albedo
(0.15–4 mm), which could also play a role. A solar
irradiance increase or albedo decrease also have the
potential to produce a global warming. By measuring the
sunlight reflected and radiation emitted by the Earth, one
can determine A and g, respectively.
[5] It has been known for some time that the so-called

solar constant varies. In particular, data from the Active
Cavity Radiometer (ACRIM I) on board the Solar Maxi-
mum Mission have shown for one cycle (�11 years) that the
solar irradiance is about 0.1% greater at activity maximum

than at activity minimum [Willson and Hudson, 1988,
1991], and now this result from a series of satellites covers
two solar cycles [Fröhlich, 2000]. The precise origin of the
changing irradiance is generally attributed to a competition
between two components of the Sun’s magnetic field, dark
sunspots and bright faculae, but an unambiguous descrip-
tion remains elusive. On the basis of climatological models
of heat storage and thermal inertia of the oceans [Jayne and
Marotzke, 2001] it is widely accepted in the climate
community that a 0.1% (0.3 Wm�2) change is several times
too small to be climatologically significant over the 11-year
solar cycle [Lean, 1997], particularly if it is to be further
obscured by a steady increase in greenhouse forcing. It has
been suggested that there may have been two to three times
larger, sustained excursions in the recent past [Lean, 1997],
like during the ‘‘Maunder Minimum’’ (1650–1710) when a
sunspot was rare [Eddy, 1976]. Still, there is evidence of a
solar cycle influence on climate going back more than
100,000 years [Ram and Stolz, 1999]. If the 0.1% increase
in the mean solar irradiance between the mid-1980s and
1990 were typical, then one is led to consider more carefully
the possibility of a variation in the Earth’s albedo. After all,
the Earth’s reflectance seems to show considerable variation
[Goode et al., 2001].
[6] It is not unreasonable to expect that global changes in

the Earth’s climate would be manifest in changes in the
Earth’s albedo. Potential parameters affecting the albedo are
volcanic eruptions, surface vegetation and/or desertification
[Betts, 2000], snow and ice coverage [Randall et al., 1994],
and atmospheric constituents such as aerosols, water vapor
and clouds [Cess et al., 1996; Ramanathan et al., 1989;
Charlson et al., 1992]. Albedo changes will be determined
by the total effect of the changes in all these parameters.
However, these changing parameters will bring along mul-
tiple climate feedbacks, which make assessing the exact
change in albedo a hard task [Cess et al., 1996]. During the
past decades there have been some efforts to measure the
Earth’s albedo from space.
[7] The Earth Radiation Budget Experiment (ERBE)

instruments were flown on the ERBS, NOAA-9 and
NOAA-10 satellites from late 1984 to 1990. ScaRab/Meteor
and ScaRaB/Ressur also measured the albedo during 1994–
1995 and 1998–1999 respectively. More recently, in
1998, the Clouds and the Earth’s Radiant Energy System
(CERES) have begun taking measurements, and the Geosta-
tionary Earth Radiation Budget Experiment (GERB), the first
broadband radiometer on a geostationary satellite, is in
operation since December 2002. In the future, the TRIANA
mission may also contribute by observing the full Earth disk
reflectance from a privileged deep space position at the L1
Lagrangian point, although at present the mission is on hold.
However, a long-term data series of the Earth’s albedo is
difficult to obtain due to the complicated intercalibration of
the different satellite data and the long gaps in the series.
[8] To derive ideally perfect estimates of the Earth’s

reflectance it would be necessary to observe reflected
radiances from the Earth, from all points on the Earth and
at all angles. Therefore all measurements from which albedo
can be inferred require assumptions and/or modeling to
derive a good measurement. The availability of different
albedo databases and their intercomparisons can help to
constrain the assumptions necessary to derive estimates. In
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this sense, long-term ground-based estimates of the Earth’s
reflectance complementary to those from satellites, would
be an advantage.
[9] Here, we focus on a terrestrial determination of the

Earth’s global albedo from an old, and largely forgotten
method. That is, global albedo can be determined by
measuring the amount of sunlight reflected from the Earth
and in turn, back to the Earth from the dark portion of the
face of the Moon (the ‘‘earthshine’’ or ‘‘ashen light’’). The
most important historical program of earthshine measure-
ments was carried out by Danjon [1928, 1954] from a
number of sites in France. He used a ‘‘cat’s eye’’ photom-
eter to produce a double image of the Moon, allowing the
visual comparison of the intensities of two well-defined
patches of the lunar surface, one in sunlight and the other in
earthshine, at various lunar phases. Using the ‘‘cat’s eye’’
mechanism, he stopped down the light from the sunlit
portion to match the brightness of the ashen portion. This
differential measurement removed many of the uncertainties
associated with varying atmospheric absorption and the
solar constant, allowing Danjon to achieve his estimated
uncertainty of roughly 5%, ignoring his appreciable sys-
tematic error from an incorrect determination of the Moon’s
reflectivity. Our measurements are about an order of mag-
nitude more precise than his estimates, in large part because
we have better measurement technologies. We have also
solved the problem of the uncertainty in the scattering from
the Moon as a function of the phase of the Moon (see
section 4). At about 1% precision on individual nights, our
terrestrial estimates of the Earth’s albedo have a precision
comparable to that from satellites like ERBE with around
the same value [Harrison et al., 1990] and to those of the
CERES instrumentation, of around 1% [Kato et al., 2002].
[10] Note that our 1% precision applies to the Earth’s

reflectance for a given night, the precision stated for ERBE
products apply in most cases to monthly means for 2.5�
latitude-longitude regions or larger and in some cases to
daily values. A quasi instantaneous regional flux or albedo
value is far less accurate than the corresponding radiance
(specific intensity) measurements from which it is derived,
because of the notorious uncertainty in radiance-to-flux
conversion. The bidirectional reflectance distribution func-
tions used in ERBE only have statistical validity. Those
being developed with CERES data may be better, but they
remain largely statistical.
[11] From 1926 to 1930, Danjon made 207 measurements

of earthshine. Dubois [1947] continued the program through
1960 from the observatory at Bordeaux using a Danjon-type
photometer.
[12] Danjon’s and Dubois’s [1947] results show a number

of interesting features. The daily mean values of the
observations vary more widely than would be expected on
the basis of the variation of measurements on a single night.
This can plausibly be attributed to daily changes in cloud
cover or changes in the reflection because of changes in the
Sun-Earth-Moon alignment during a lunar month. The
typical lifetime of large-scale cloud systems (1000’s of
km) is 3 days [Ridley, 2001], but from one night to the
next the Earth’s area contributing to the earthshine changes
(see Figure 1). Unfortunately, extensive cloud cover data
were not available at the time of Danjon’s and Dubois’s
[1947] observations.

[13] Danjon [1928] also examined his observations to
determine whether there was a long-term trend in albedo,
but found none. Dubois’s observations for some 20 years
ending in 1960, showed considerable annual variability,
which he speculated was due to solar activity. His published
monthly variations from 1940–1944 also show a strong
correlation with the 1941–1942 El Niño. In the past
40 years, there have been observations of earthshine by
Huffman et al. [1990] and one-time observations by Franklin
[1967] and J. R. Kennedy (unpublished data, 1969).
[14] Danjon used his observations to estimate the mean

global albedo. Since the observations are only at visible
wavelengths, they must be corrected for the balance of the
short-wavelength radiation, most of which is in the near-IR
range. Estimates of this correction were made by Fritz

Figure 1. A not-to-scale cartoon of the Sun-Earth-Moon
system viewed from the pole of Earth’s orbit. (a) Earth’s
topocentric phase angle, a, with respect to BBSO. The plot
also shows the Moon’s selenographic phase angle, q, with
respect to one of the fiducial points (Grimaldi) used in the
observations made from BBSO (also indicated). b is the
angle between the sunlight that is incident somewhere on
the Earth and reflected, as earthshine, to Grimaldi. q0(= b�a)
is the angle between the earthshine that is incident and
reflected from the Moon. The path of the earthshine
is indicated by the broken lines. q0 is of order 1� or less. (b)
Same diagram as in Figure 1 (top) drawn for a negative lunar
phase angle, and extra features like the Moon’s orbit around
the Earth are indicated. In both Figures 1a and 1b, the aspect
of the Moon as would be seen from BBSO is also indicated
in a box. The lightly shaded areas of the Earth indicate
the approximate longitude range that contributes to the
earthshine. Note how for positive lunar phases (Figure 1a)
the earthshine contribution comes from longitudes east of
BBSO, while for negative phase (Figure 1b) angles it comes
from longitudes west of BBSO. See color version of this
figure in the HTML.
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[1949], after taking into account the decrease of the Earth’s
albedo with increasing wavelength (our ‘‘blue planet’’). Fritz
also attempted to correct for the geographical bias in Dan-
jon’s observations. The Earth’s eastern hemisphere (Asia,
Russia), which was most frequently observed by Danjon, has
a greater fraction of land than does the globe as a whole,
implying that Danjon’s value would be high because the sea
is dark compared to land. Combining the decreases from the
absence of the IR and geographical bias, Fritz found that
Danjon’s visual albedo of 0.40 corresponds to a Bond albedo
(considering all the wavelengths and directions) of 0.36.
[15] Flatte et al. [1991] noted that a correction must be

made for the ‘‘opposition effect’’ present in lunar reflec-
tance properties. Observations of the Moon show that the
Moon’s reflectivity has a strong angular dependence, which
was unknown in Danjon’s time. This enhancement was once
thought to be due to the porous nature of the lunar surface
[Hapke, 1971], and was unknown in Danjon’s time. More
modern work has shown it to be caused by both coherent
backscatter of the lunar soil and shadow hiding in roughly
equal amounts [Hapke et al., 1993, 1998; Helfenstein et al.,
1997]. In fact, we shall see in section 4 that an incorrect
lunar phase function is the primary source of Danjon’s
overly large visual albedo.
[16] We have been steadily observing the earthshine from

Big Bear since 1998 to determine the Earth’s reflectance
and its variations. Our photometric observations cover the
spectral range from 400 to 700 nm. In this paper, we discuss
in detail the method we used to determine reflectance from
earthshine. As mentioned, the first such observations were
made by Danjon [1928], and considerable modernization
was required to make this method sufficiently precise to
usefully complement satellite measurements. Beyond devel-
oping the methodology, our purpose here is to demonstrate
the reliability of the technique. This is the first of a series of
papers deriving from our earthshine project. The next paper
[Pallé et al., 2003] (hereinafter referred to as Paper 2)
presents and interprets the results of our observational work
and simulations of the observations. A third paper in
preparation concerns our observations of the spectrum of
the earthshine in the visible range (500–800 nm) from the
6000 (1.5 m) telescope on Mount Palomar, with an Echelle
spectrograph with a resolving power of R = 19,000.
[17] In the following section we will discuss the theoretical

approach to the earthshine Bond albedo determination.
Section 3 describes in detail the data reduction techniques
followed to analyze the earthshine data. In section 4 our
method for lunar phase function determination and the
corrections applied to its calculation are also detailed. Finally,
section 5 discusses the precision achieved in our nightly
albedo determination. Two appendices have been included
in the paper, the first deals with the optical setup of our
telescope, and the observational technique followed during
observations. The second contains the description of the
two methods employed to determine the exact transmission
of the filter used for our lunar bright side observations.

2. Determining the Earth’s Reflectivity
From Earthshine

[18] Ground-based measurements of the short-wavelength
(visible light and near infrared) albedo of a planet in our solar

system are relatively straightforward, except for the Earth.
However, we can determine the albedo from the ground by
measuring the earthshine. From a terrestrial perspective, the
earthshine is the sunlight reflected from the day side of the
Earth to the night side of the Moon, and finally back to a
nighttime observer on the Earth. At any moment, the
earthshine can provide an instantaneous, differential cross
section of the sunlight reflected from the Earth, see Figure 1.
[19] The Earth’s differential cross section is defined as the

ratio between the scattered radiation per unit solid angle and
the incident radiation of a given surface, and depends on its
geometrical albedo and its phase function. The geometrical
albedo (the ratio between the intensity of normally incident
radiation reflected from a surface and the incident intensity)
is independent of b, the Earth’s phase angle; rather, it is
proportional to the backscattered cross section. At the top of
the atmosphere (taken by convention as being 30 km high
by the ERBE data processing), the differential cross section
of the reflected sunlight for scattering by an angle b (note
that b is the supplement of the usual scattering angle) is
given by

ds
d�

� pEfE bð ÞR2
E; ð5Þ

where RE is the radius of the Earth, pE is the geometrical
albedo of the Earth and fE(b) is the Earth’s phase function,
defined such that fE(0) = 1, as is done for the case of the
Lambertian phase function given in equation (8).
[20] The bidirectional nature of the Earth’s reflectance is

included in pE fE (b). This is a recognized central difficulty
of satellite-based albedo estimates, where the solar zenith
angle (function of latitude, date and time), the viewing
zenith angle, and the relative Sun-Earth scene-satellite
azimuth must be taken into account with different instru-
ments and satellites providing different samples in the
viewing and illumination angles, and with more or less
reliable angular models [Loeb et al., 2003; Wielicki and
Green, 1989]. The sampling is necessarily different, with
Earthlight on the Moon, but the problem does not go away
because our measurements are restricted to the light scat-
tered to the orbital plane of the Moon around the Earth. For
the earthshine, no attempt is made to correct for the
anisotropy of the sunlight reflected by the Earth.
[21] From an earthshine perspective, using equation (5),

we can write the total scattering cross section as

s ¼
Z

ds
d�

d� ¼ pR2
EpE

Z p

�p
fE bð Þ sin bð Þj jdb; ð6Þ

where pE and fE depend on the Earth’s weather, season and
climate. Additionally, fE depends on the Earth’s phase as
seen from the Moon. From the total cross section, we can
define the Bond albedo, the fraction of solar energy incident
on the planet that is reflected, as

A ¼ s
pR2

E

¼ pE

Z p

�p
fE bð Þ sin bð Þj jdb: ð7Þ

[22] Using earthshine data, we integrate over the phases
of the Moon to determine, say, a seasonally or yearly
averaged Bond albedo. b varies between 0 and ±p, with 0
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to p being the waning Moon and �p to 0 being the waxing
Moon. This averaging is done over a series of measure-
ments, which comprise a wide range of geographical and
temporal coverage. When the earthshine observations are
done, the Earth as seen from the Moon changes day to day
due to the Moon declination, the Earth’s phase and mete-
orological reasons. By averaging observations over lunar
phases, and thus time, stable estimates of the Bond albedo
are obtained for seasonal and yearly timescales.
[23] If we assume that the Earth is a Lambert sphere, we

can do the integrals in equations (6) and (7) exactly. A
Lambert sphere isotropically reflects from its surface, which
is assumed to be fully diffusive. Then, fL, the Earth’s
Lambert phase function, is determined by

fL bð Þ ¼ p� bj jð Þ cos bþ sin bj j
p

: ð8Þ

[24] The Earth’s phase function is observed to be very
roughly Lambertian for jbj 
 2p/3 [Goode et al., 2001].
Under this assumption, we determine a simple proportion-
ality between the geometric albedo and the global or Bond
albedo, namely,

pE; L ¼ 2

3
AB; L: ð9Þ

[25] Modeling confirms that the Earth’s phase function is
approximately Lambertian for jbj 
 2p/3 [Flatte et al.,
1991]. Thus a conveniently normalized, differential measure
of the Earth’s reflectivity is the apparent albedo, p*, where

p* � pE fE

pE; L fE;L
AB;L ¼ 3

2

pE fE

fE;L
; ð10Þ

which is the albedo of a Lambert sphere that would give the
same instantaneous reflectivity as the true Earth at the same
phase angle, and where an unchanged p* as a function of
phase angle would imply a Lambertian Earth.
[26] One may think of p* as a sort of generalization to

nonzero phase angle of what Allen [1973, p. XX] calls
simply p, with p being ‘‘the ratio of a planet brightness at
phase angle 0 to brightness of a perfectly diffusing disk with
the same position and apparent size as the planet’’. The
Bond albedo is then defined as A = pq, where q ‘‘is a factor
that represents the reflection law.’’
[27] An observer on the Moon in the region illuminated

by the Sun and visible from the Earth would see both the
direct sunlight and some part of the sunlit Earth. The solar
flux (or irradiance) seen by that observer would be

IS ¼ C

R2
MS

; ð11Þ

where C is the solar constant and RMS is the Moon-Sun
distance measured in astronomical units. Similarly, the
irradiance of the Earthlight would be

IE ¼ C

R2
ES

pE fE bð Þ R2
E

R2
EM

; ð12Þ

where REM and RES are the Earth-Moon and Earth-Sun
distances, respectively. Thus the Earth’s reflectivity can be
expressed as

pE fE bð Þ ¼ IE

IS

REM

RE

� �2
RES

RMS

� �2
: ð13Þ

[28] In the observations, we study pairs of diametrically
opposite fiducial patches, five in the earthshine and the
other five in the sunlit part of the Moon, both near the
nighttime lunar limb. Hereafter when referring to radiances,
we will use the term ‘‘earthshine’’ to refer to the radiances
measured for the five fiducial patches on the earthshine side
of the Moon, and we will use the term ‘‘moonshine’’ to refer
to the radiances measured for the fiducial patches located on
the bright side of the Moon bathed in sunlight. The term
‘‘crescent’’ radiance will also be used in following sections,
indicating the measured radiance averaged over the whole
sunlit area of the lunar disk.
[29] For our purposes here, we call a representative pair

of those opposing fiducial patches ‘‘a’’ and ‘‘b’’ and treat
them as unit projected areas. If a is illuminated only by the
earthshine, the radiance observed by an observer on the
Earth at a distance Roa would be

Ia ¼ IE
pa fa q0ð Þ
R2
oa

Ta; ð14Þ

where Ta is the transmission of the earthshine through the
atmosphere, and fa(q0) is the lunar phase function for the
near retroflection from patch a, therefore q0 value is almost
always 
1�, see Figure 1. Thus Ia/Ta is the observed
radiance corrected for air mass. Similar to equation (14), the
radiance of the sunlit portion, b, would be

Ib ¼ IS
pbfb qð Þ
R2
ob

Tb; ð15Þ

where q is the lunar phase angle and q, like a and b, varies
between 0� and ±180� (where positive angles correspond to
a wanning Moon and negative to a waxing Moon), and
where the lunar phase function, fb(q) embodies the
dependence of the fiducial patch on the angle between the
sunshine and the moonshine, see Figure 1. The available
night of earthshine observations are those with lunar phase
angle between ±40� to ±150�. Thus

Ia=Ta
Ib=Tb

¼ IE

IS

pafa q0ð Þ
pbfb qð Þ

R2
ob

R2
oa

ð16Þ

and so

pE fE bð Þ ¼ Ia=Ta
Ib=Tb

pb fb qð Þ
pa fa q0ð Þ

RES

RE

� �2
Roa

Rob

� �2
REM

RMS

� �2
: ð17Þ

[30] Although there is a small difference between the
earthshine and moonshine spectra (mainly due to Rayleigh
scattering in the Earth’s atmosphere, which translates in a
5 nm shift of the peak of the earthshine spectrum toward the
blue), equation (17) is independent of lunar reflectance
provided all quantities labeled by ‘‘a’’ are derived from
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the earthshine, and all labeled ‘‘b’’ come from moonshine.
However, we ultimately take pa and fa(q0) from moonshine
data, which introduces a dependence on the lunar reflec-
tance. This effect is small compared to the spread among the
pb/pa, and we treat it as being subsumed into that ratio, see
section 4.4. Also, (R0a/R0b)

2 is so close to unity that we can
safely set that factor in equation (17) to unity. Thus we
determine that

pE fE bð Þ ¼ Ia=Ta
Ib=Tb

pb fb qð Þ
pa fa q0ð Þ

REM

RE

� �2
RES

RMS

� �2
: ð18Þ

[31] We measure Ia and Ib in our nightly observations, and
correct for air mass (e.g., Ia/Ta). We have measured the lunar
phase function quite accurately over the last 3 years. We use
total eclipse data from 29 November 1993 to measure the
ratio of the geometrical cross sections of the two fiducial
patches, pb/pa. For our fiducial regions, this ratio ranges
between 0.9 and 1.1. In section 5, we combine equations
(10) and (18) to define our measure of the Earth’s reflec-
tivity, p*, in terms of measured quantities. Variations of the
Earth-Moon distance are accounted for.

3. Data Reduction

3.1. Image Analysis

[32] The earthshine and moonshine (sunlit part of the
Moon) intensities are measured by integrating the bright-
ness of a pair of fiducial patches: one from the bright side
and the other from the dark side of the lunar disk. In our
study, 10 physically fixed fiducial patches have been used
with five in the earthshine and five in the moonshine, see
Figure 2. In selenographic (lunar) coordinates, the center
latitudes and longitudes of the five patches on the Crisium
side are (�17.5, �70.), (�11.2, �71.5), (�5., �76.), (0.,
�75.), and (7.5, �76.5), and those of the five patches on the
Grimaldi side are (28.5, 72.5), (12.5, 75), (0., 77.), (�7.5,
75.), and (�13., 75.). Each patch covers a longitudinal
range of about 10� and latitudinal range of 3�–5�, the
surface area being about 0.1% of the lunar surface, which
corresponds to about 100 camera pixels. These patches are
located in the ‘‘highlands’’ of the lunar surface, and the
physical reflectivity of each is roughly comparable. One of
the patches on the Grimaldi side is very close to Danjon’s
choice, while the patches on the Crisium side are all closer
to the limb than Danjon’s patch (Figure 2).
[33] To locate these patches in each lunar disk image

taken every night, we establish the transformation between
the CCD image coordinate system and the selenographic
coordinate system. Once the transformation between the
image plane and the selenographic system is established,
the five pairs of fiducial patches can be precisely located on
the lunar disk image. The apparent areas of these patches
change from night to night because of lunar libration. The
intensity is read out as an average of the whole area, and the
difference due to the geometric effect of the reflectivity
arising from libration is accounted for in our next step of
data reduction (section 3.2). All our data reduction is done
automatically by a software package specially developed for
this purpose. The process of earthshine data reduction and
calibration is illustrated in Figure 3.

[34] To ensure accurate photometry, flat fielding and dark
current subtraction are performed on each image. For
earthshine images, we also need to subtract the background
scattering from the bright side of the Moon due to the
Earth’s atmosphere and our telescope. The background
scattering should be a function of both the inclination of
the vector connecting the lunar center and the background
point with respect to the lunar equator, and the distance
from the background point to the crescent. After experi-
mentation, we found that we could safely assume that on the
earthshine side, where the background points are not too
close to the crescent, at a fixed inclination with respect to
the lunar equator, the background intensity falls off linearly
with the distance of the background point to the lunar
center. Such a linear relation holds for the points that are
not too far from the lunar equator. So, for each fiducial
patch centered on the vector connecting the lunar center and
the patch, we open a small cone with an angular size of 5�,
and fit the intensities of the background points which are
beyond the lunar limb and inside the cone, as a function of
their distance to the lunar center. In this way, we can
extrapolate the scattering intensity to the position of the
fiducial patch (inside the lunar disk) using the parameters

Figure 2. The Moon showing the bright side and the
earthshine. The Grimaldi side is in the moonshine and the
Crisium side is in the earthshine. Our 10 fiducial patches
used in the observations made from BBSO are indicated.
The crosses give the approximate positions of Danjon’s
fiducial patches. Goode et al. [2001] used one fiducial patch
on each side, and on the Crisium side it is the one closest to
the white cross, while on the Grimaldi side it is the one
immediately above the black cross. In the image the lunar
phase is 115.9�, near a declining quarter Moon. Unlike the
moonshine, the earthshine is flat across the disk. The
flatness is due to the uniform, incoherent back scattering
(non-Lambertian), in contrast to the forward scattering of
sunlight occurring in the sunlit lunar crescent surface.
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obtained from the least squares fit, and then subtracting the
linearly extrapolated value from the intensity of the fiducial
patch. This procedure is illustrated in Figure 4.
[35] In accordance with equation (18), the intensity

obtained from above is also corrected by scaling to a set
of standard distances between the Sun, Moon and Earth,
before the successive steps of calibration described in
subsequent subsections. Precise distance parameters are
obtained from an ephemeris.

3.2. Atmospheric Extinction

[36] To eliminate the effect of the atmospheric extinction,
observations are carried out for as long as possible during
the night, so that a measurement of the intensity at varying
air mass can be obtained. For the bright side of the Moon,
we expect the variation of the intensity to follow Beer’s law:

I ¼ I0e
�ahð Þ; ð19Þ

where I is the observed intensity, a is the atmospheric
extinction coefficient, h is the local air mass and I0 is the
intensity at zero air mass: the intensity if the Earth had no
atmosphere.

[37] The air mass, h, is determined from the angular
altitude of the Moon in the sky at different times in such
a way that when jc (the zenith angle of the ground
observer’s view of the Moon, which is the complement of
the Moon’s angular altitude) is smaller than 60�, h =
1./cos(jc); otherwise h is interpolated from a standard air
mass table (Table 1).
[38] The above calculation refers to the air mass at sea

level with the pressure p0 = 760 mmHg and temperature t0 =
10�C, and the real air mass at the observer’s location must
be corrected by a multiplicative factor of p/p0/(0.962 +
0.0038t) [Allen, 1973]. BBSO is 2067 m above sea level,
and the pressure scale height at this altitude is 8200 m,
which yields p = p0 exp(�2067./8200.). We then incorpo-
rate the calculated h into the Beer’s law fitting to determine
a and I0. We reckon that throughout a night, the evolving
lunar phase function can also contribute to the changing
intensity. The maximum phase change in a long night is
<2�, within which the intensity change is negligible com-
pared to the change due to the air mass. Nevertheless, we
employ a quasi-iterative way to correct this minor effect, in
that we use an initial fit of the phase function to correct the
data, and after the air mass correction, we make the phase

Figure 3. An schematic diagram of the earthshine data reduction procedure. On the left are the standard
astronomical steps followed to correctly retrieve the intensity of the lunar dark and bright side patches.
On the right are the steps necessary to correct the retrieved values for the lunar phase function. The thin
white boxes correspond to image treatment procedures, while the shaded boxes correspond to
calculations done with readout intensity values or p* data. The end result is a calibrated series of p*
depending on lunar phase, on q, and on time along a single night. We also obtain an averaged p*(q) for the
night by taking the mean of our p*(q, t). Also indicated are the sections in the paper in which each data
reduction step is explained in detail. See color version of this figure in the HTML.
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function fit again. See the following section on how to
obtain the phase function. After a few iterations, the data
converge to a stable result. The observed intensity at each
moment, Ii, is corrected, using the air mass, to the intensity
at zero air mass, Ii

0 = Iiexp(ah). I0 from the fitting is further
used as the intensity for that night’s lunar phase function.
[39] The goodness of the fit to Beer’s law offers a ready

criterion by which each night’s local sky can be judged: The
‘‘good’’ night’s data can be separated from that of the ‘‘bad’’
(noisy) night’s (Figure 5). In practice, unless it is cloudy, the
data from almost all observable nights are preserved, and
the standard error in the fitting for each night is further used
as the input error for the lunar phase function fit. Figure 5
shows an example of a typical good night and bad night, as
judged by fitting to Beer’s law. Experience from the
observations shows that the data usually follow Beer’s
law quite well, and the accuracy of the moonshine fitting
is often better than 1%. Among all the data sets collected for
340 nights from 28 November 1998 to 31 March 2002, the
accuracy of the fitting is better than 1% for 110 nights, and
the accuracy is between 1% and 2% for 139 nights, and
between 2% and 3% for 52 nights.
[40] In the case of earthshine intensity, apart from the

atmospheric transmission, the evolution of the earthshine is
also influenced by changing of the Earth during a given
night; for example, the Sun rising over a cloudy China. In
addition, almost every month, on a few nights, we observe
that the evolution pattern of the earthshine intensity does not
track Beer’s law in an unambiguous way, even though the
moonshine intensity closely follows Beer’s law. An exam-
ple of such a case is shown in Figure 6. In general, the fit to
the earthshine yields a standard deviation that is larger than
that for the moonshine fitting by 0.5–1%. This latter

difference contains the signal of the Earth’s albedo varia-
tions. On such nights when the evolution of the earthshine is
significantly controlled by real changes in the Earth’s
reflectance, apart from the atmospheric extinction, as illus-
trated in Figure 6c, the atmospheric extinction coefficient a
obtained from the Beer’s law fitting of the earthshine
observations may deviate from the true value. That is, some
part of the earthshine signal may be subsumed into the
atmospheric extinction, and vice versa, so that the correct
atmospheric attenuation cannot be properly determined
from the standard Beer’s law fitting.

Figure 4. Illustration of the background subtraction for earthshine images. (left) A background cone
around a fiducial patch, within which the intensity of the background points outside the lunar disk are
read out to make a fit as a linear function of the distance from the lunar center. For the image shown, the
intensity inside the cone has the background subtracted already by extrapolating the linear fit to points
inside the lunar disk. (right) The decline of the off-limb intensity as the background point gets farther
from the lunar center; the overplotted thick shaded line indicates the least squares linear fit.

Table 1. Standard Air Mass Table

jc, deg h

60. 2.00
62. 2.12
64. 2.27
66. 2.45
68. 2.65
70. 2.90
72. 3.21
74. 3.59
76. 4.07
78. 4.72
80. 5.60
81. 6.18
82. 6.88
83. 7.77
84. 8.90
85. 10.39
86. 12.44
87. 15.36
88. 19.79
89. 26.96
90. 40.00
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[41] To deal with this problem, we investigated the
relationship between the atmospheric extinction coefficients
for radiances measured at the five patches on the earthshine
side of the Moon (ae

i ; i = 1, 2, 3, 4, 5), the radiance of the
five patches on the bright side or moonshine (am

i ) and the
radiance of the total area of the crescent (ac). Figures 7a and
7b show the relationship between ac and the am

i for all five
fiducial patches. Least squares fits reveal that the am

i (i =
1, 2, 3, 4, 5) can be regarded as being identical to one
another, and to ac. This is not a surprise, even though the
atmospheric attenuation is also a function of the wave-
length, as the light from a moonshine fiducial patch is
assumed to have the same spectrum as the light from the
whole bright side. Similarly, the earthshine extinction coef-
ficient, ae, is linearly correlated with ac (Figure 7d), but the
absolute value of ae is systematically larger than that of ac,
indicating a stronger atmospheric attenuation in earthshine
than in moonshine. This is because the earthshine and the

moonshine have different spectra, specifically, the earth-
shine is bluer than the moonshine [Tikhoff, 1914; Arnold et
al., 2002; Woolf et al., 2002], because the bluer the light the
more effectively the Earth’s atmosphere scatters it away by
Rayleigh scattering.
[42] The solution to fitting nights like those shown in

Figure 6 lies in exploiting the linear scaling law that we find
between ae and ac. This scaling enables us to make a better
determination of ae from ac for the nights when the usual,
local air mass changes leading to a good Beer’s law fit for
the moonshine, are compounded by sharp earthshine varia-
tions. In those cases, the mixture yields observational
earthshine data that deviate sufficiently from Beer’s law,
so that one cannot be confident of the fit obtained in the
usual way. Our solution lies in using ac to fix ae for the
problematic nights, beginning with

ae ¼ a� ac þ b; ð20Þ

Figure 5. Intensity per unit (lunar) area of (top) the moonshine, (middle) the crescent, and (bottom) the
earthshine, plotted against (left) time and (right) air mass. These intensities are data count values read
from the CCD, corrected for all the steps indicated in section 3.1 and divided by the lunar phase function.
In the case of moonshine and crescent intensities the value has been also divided by the transmission of
the bright side filter. The crosses indicate observed data points, and the solid lines are the fits to Beer’s
law. (a) Data from the night of 5 September 1999, demonstrating a typical good night; the standard
deviation of the fitting is 0.007, 0.005, and 0.007 (from top to bottom). (b) Data from the night of 17
September 1999, demonstrating a typical, partly cloudy night; the standard deviation of the fitting is
0.219, 0.183, and 0.077 (from top to bottom).
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where the scaling parameters a and b are obtained by a
linear least squares fit of the above relation using ae and ac

from the nights that do not show apparent earthshine
evolution that strays strongly from the Beer’s law fit. We
reckon that for the nights of significant earthshine change,
the standard deviation of the Beer’s law fitting of the
earthshine (se) must be a lot larger than that of the crescent
(sc), given that the local atmosphere is reasonably stable
throughout a single night. For this reason, we make a further
assumption that when se is less than a cutoff value q times
sc, i.e., se < qsc, we regard the global change as not being
significant during this night, and ae from the Beer’s fitting
for this night is reliable. Only then do we use these nights to
make the fit in order to determine a and b.
[43] In Table 2, we list the fitting results, a, b, s (the

standard deviation of the fit), sa and sb (the fitting errors of
a and b respectively) for various cutoff values, q = 1.0, 1.2,
1.5, 2.0, 2.5.
[44] We can see from Table 2 that for q < 2.0, the fitting

results are consistent with each other. In general, the
absolute value of ae is larger than that of ac by more than
0.01, or about 10%. That is, using ac � 0.1 and Table 2, we
have ae � 1.2 � ac � 0.01 � 0.11. We first tried to scale
ae

i to ac separately, and the resulting fitting parameters a
and b did not differ for different patches. Thus we do not

distinguish among the ae from different fiducial patches,
because there is no reason for us to believe that the ae

i

should be different from one another (also see Figure 7c). In
the subsequent analysis, we employ the scaling parameters
at q = 1.2 in equation (20) to obtain ae from ac for nights
when se > 1.2sc. Then, we use ae to fit out the atmospheric
attenuation, so that we can determine the true earthshine
signal. After applying this correction, a direct result is that
while the average of the p* is not altered, for some nights
their appreciable, original deviations from the average, at
comparable lunar phase, is greatly reduced. For those same
nights the calculated ae yields a slightly poorer fit to the
data than would a direct fitting to Beer’s law. The price of
this latter fitting was to force some of the earthshine signal
into the atmospheric extinction coefficient, yielding an
erroneous extrapolation to zero air mass.

4. Lunar Phase Function

[45] The lunar phase function is defined as the normalized
change in the moonshine intensity as a function of lunar
phase, which represents the geometric reflectance of the
Moon. It is measured from the readout intensity of each of
the fixed fiducial patches (five on the Crisium side and five
on the Grimaldi side) used throughout the observations,

Figure 5. (continued)
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after carrying out all the corrections described in the
previous section to the raw data. When the observed
intensity readout is plotted against the lunar phase for all
nights, the data are quite scattered around different means
for each branch, as illustrated in Figure 8, for the Crisium
and Grimaldi pair used by Goode et al. [2001]. Figure 8,
and that pair, are treated in detail in this section. The raw
results for all pairs take the same form as the chosen pair
that is used for Figure 8. On the face of it, the large
scattering of data in Figure 8 would seem to preclude a
precise determination of the Earth’s albedo from measuring
the earthshine. However, most of the scattering of data is
due to known physical effects for which one can systemat-
ically account, and then remove.

[46] 1. The first factor is the night-to-night change of the
local atmosphere, apart from the nightly atmosphere attenu-
ation which follows Beer’s law. Such a change affects the
measured crescent as a whole, and moonshine and earthshine
from the fiducial patches in precisely the same way, and
hence, the raw phase function can be corrected by treating the
crescent as a standard star (see section 4.1). This correction
does not alter the determination of p*, because the correction
applies to both the earthshine and moonshine, while p* is
given by the ratio of the earthshine to the moonshine.
[47] 2. The second factor is the Sun’s position, namely

the declination and right ascension, due to the changing
angle of the sunlight into the Earth-Moon system at the
same lunar phase, but in different synodic months. This
changes the range of well-illuminated latitudes both on
Earth and the Moon from one month to the other. To first
order, we fit out the alteration of the scattering introduced
into the phase function (see section 4.2). As it turns out, this
is a very small correction to the moonshine intensities and
consequently to p*.
[48] 3. The third known source of the scatter in Figure

8 is the Moon’s libration, which changes the observed
intensity from the moonshine fiducial patches, but does
not affect the earthshine intensity (see Figure 3, in which the
nonuniformity of the moonshine near the limb is apparent,
but there is no such nonuniformity in the earthshine). To
first order, we model this effect as a linear function of the
libration and correct it for both the phase function and in the
moonshine intensity Ib, when using Ib to calculate p*
(section 4.3).
[49] The results of these corrections are developed in this

section, one step at a time. We shall see that we can
determine the lunar phase function to 0.5%, which gives
us real confidence that observing the earthshine can yield a
precise reflectance for the Earth.
[50] In the last part of this section (4.4), we normalize the

overall lunar phase function to connect the right and left
branches of the lunar phase function by treating the oppo-
sition surge that occurs at small phase angles [Hapke, 1971;
Flatte et al., 1991; Helfenstein et al., 1997]. The data here
are from the fullest of full Moons and the one total lunar
eclipse we observed in Big Bear. The total eclipse enables
us to determine the ratio of the geometrical albedos of the
opposing pairs of fiducial patches.

4.1. Atmospheric Correction

[51] The nightly fits of the moonshine intensity to Beer’s
law are quite good, and so the extrapolation to zero air mass
would seem quite reliable. However, there is an appreciable
change in our lunar phase function (see Figure 8), for the
same phase, from month to month. As we shall see, the
prime cause of this is that, even after extrapolation to zero
air mass, the resultant intensity is subject to changes in the
local atmospheric conditions. It seems that the local atmo-
sphere is not a uniform plane, parallel gas, but rather we
have something more like a canopy superposed on a plane
parallel atmosphere. The canopy mutes the intensity by the
same amount for all air masses, and therefore its effect
remains after extrapolation. Because of this, there is a
deviation in the intensity measured from the same fiducial
patch at the same lunar phase, but on different nights (that
is, successive lunar cycles). To solve this problem, we

Figure 6. The moonshine, crescent, and earthshine
intensities and their Beer’s law fits for the night of 28
January 2000, showing that while the moonshine and
crescent intensities follow Beer’s law very well, the
earthshine intensity evolution deviates from Beer’s law.
The standard deviations of the fits are 0.004, 0.005, and
0.014, respectively. The fact that the fit is poor only for the
earthshine implies sizable short-term variations in the
Earth’s apparent albedo as seen from BBSO due to a
combination of factors including, among others, the Earth’s
rotation, anisotropic reflectance, and weather changes.
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employed the common practice of nighttime observers;
when doing absolute photometry they use standard stars
to account for the muting. We have found that the crescent
of the Moon (the area illuminated by sunlight) is our best
standard ‘‘star.’’

[52] In the extrapolation to zero air mass, we use a fifth-
degree weighted polynomial fit for both the fiducial patch
intensity and the average crescent intensity over the area of
the bright portion as the way to determine the average of the
intensity at each lunar phase. In removing the canopy effect,

Figure 7. Variation of the atmospheric extinction coefficients for the crescent (ac), moonshine (am),
and earthshine (ae). (a) am (for five fiducial patches as indicated by different symbols) against ac, from
which it is clear that the crescent and moonshine patches are very much alike. (b) am of four out of five
fiducial patches (as indicated by different symbols) versus the fifth fiducial patch, illustrating that am is
virtually the same for different patches (note the equivalence of each linear, least squares fit to the data for
each patch). (c) ae for four out of five fiducial patches (as indicated by different symbols) versus the other
fiducial patch, showing that ae is also the same for different fiducial patches in the earthshine. (d) ae (of
all fiducial patches in earthshine) against ac, which is consistent with the earthshine being bluer than the
moonshine. The various straight lines in each panel indicate a least squares fit to the appropriate data. See
color version of this figure in the HTML.
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we give double weight to nights for which the lunar phase is
less than ±5�. We do this because of the pronounced
opposition effect that gives a sharp increase in the moonshine
intensity when lunar phase approaches 0� (see section 4.4).
The deviation of the measured intensity at each data point
from the fitting curve for the lunar phase function, in both
the moonshine case and the crescent case are obtained, and
the cross correlation between these deviations is calculated.
For the morning observations, for which the lunar phase is
positive, we get a cross correlation of 0.73, and for the
evening when the lunar phase is negative, we obtain a
quite similar value of 0.77 (Figure 9). The relative corre-
lations are determined from a simple least squares linear fit
between the moonshine deviation and crescent deviation
using

Ii � �Ii
�Ii

¼ a0
Ci � �Ci

�Ci

þ b0 þ si; ð21Þ

where Ii is the observed fiducial patch intensity, Ci is the
crescent intensity, �I i and �Ci are the average fiducial patch
intensity and crescent intensity, respectively, at the same
lunar phase, and si is the scatter about the linear least
squares fit. Note that throughout this section �I i is the final,
fitted intensity, which is derived by iterating the steps
described in sections 4.1–4.3. The coefficients a0 and b0 are
derived from the least squares fitting of equation (21). From
Figure 9, it is clear that a0 is close to unity (morning/
Grimali: 0.81 ± 0.08 and evening/Crisium: 0.74 ± 0.07,
error is ±1s), while the respective b0’s are essentially zero,
0.002 and 0.001, more than two orders of magnitude
smaller than a0. That makes the second term on the right
side of equation (21) much smaller that the first. Therefore
we determine the correct, relative zero air mass intensity, I0i,
by removing the canopy effect by subtracting the linear term
in equation (21) from the earthshine data, i.e.,

I 0i ¼ Ii � a0�Ii
Ci � �Ci

�Ci

: ð22Þ

[53] The scattering among the data points is much
reduced after this correction (see Figure 12b at the end of
the section). This correction is of comparable significance
for the evening data (lunar phase < 0) and the morning data
(lunar phase > 0), as the comparable cross correlations
imply.

4.2. Declination Correction

[54] The second step in correcting the deficiencies in the
apparent lunar phase function is to remove variations arising
from the systematic change of relative position of the Moon
to the plane of the Earth’s orbit about the Sun. The

difference in right ascension between the Sun and the Moon
(hereafter, the ‘‘relative right ascension’’) changes from 180
to �180�, which essentially determines the lunar phase,
defined as the angle from between the Moon-Earth line and
the Sun-Moon line, see Figure 1. However, there is an
ambiguity in the lunar phase angle that makes the apparent
lunar phase function multivalued. In detail, the difference in
the declination between the Sun and the Moon (hereafter
‘‘relative declination’’) changes as well, since the orbital
plane of the Moon around Earth is inclined to that of the
Earth around the Sun. Toward the full Moon, the relative
declination also becomes important in determining the lunar
phase. Then, at the same lunar phase, but on different nights
(that is, different months), the position of the Moon may be
different, and this difference alters the readout intensity of
the fiducial patches. To correct for this effect, for a given
lunar phase near the full Moon, we choose a standard
position of the Moon and normalize the readout intensity
of different positions to this standard position. The standard
position is the one for which the relative declination is zero,
i.e., the Moon is in the plane of ecliptic, and the lunar phase
is equal to the relative right ascension, i.e., a total lunar
eclipse. The normalization is made as follows:

Ii � �Ii ¼ a1 Pi � Pi;RA

� �
þ b1Di þ c1 þ si; ð23Þ

where Ii is the observed intensity, �I i is the average intensity
at the same lunar phase as Ii (from the ultimately determined
lunar phase function), (Pi � Pi,RA) is the difference between
the lunar phase and the relative right ascension, Di is the
relative declination, and a1, b1, and c1 are fitting parameters,
which are determined from the least squares fitting using all
the observed intensities. The fitted parameters, a1 (morning/
Grimaldi: �0.003 ± 0.002 and evening/Crisium: 3.4 * 10�5

± 7.0 * 10�5), b1 (morning/Grimaldi: �0.47 * 10�5 ±
0.0002 and evening/Crisium: 0.0007 ± 0.0002) and c1
(morning/Grimaldi: 0.009 ± 0.008 and evening/Crisium:

Table 2. Atmospheric Extinction Coefficients ae Against ac

q a b s sa sb
1.0 1.1886 �0.0073 0.0099 0.0183 0.0023
1.2 1.1830 �0.0061 0.0128 0.0170 0.0023
1.5 1.1813 �0.0051 0.0132 0.0172 0.0023
1.8 1.1881 �0.0050 0.0140 0.0171 0.0023
2.0 1.2281 �0.0095 0.0167 0.0169 0.0023
2.5 1.2222 �0.0124 0.0164 0.0161 0.0022

Figure 8. Intensity of the moonshine for the Crisium side
and Grimaldi side fiducial patches of Goode et al. [2001],
with a third-order polynomial (including higher-order terms
has no noticeable effect) fit for each. Clearly, there is a
roughly linear decrease in the intensity of the reflected light
going from full Moon to new Moon.
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0.009 ± 0.009) are all quite small. All quoted errors are ±1s.
The normalized intensity, I0i, is derived by removing the
relative right ascension and declination:

I 0i ¼ Ii � a1 Pi � Pi;RA

� �
þ b1Di

� �
: ð24Þ

The c1 term is regarded as part of the errors (si).
[55] This correction is only made for lunar phase between

�15� and +15� since the effect of the relative position of the
Moon is only important around the full Moon. However, the
modest improvement due to this correction reveals barely
apparent changes in the data points.

4.3. Libration Correction

[56] The third step in rectifying the apparent lunar phase
function requires removing the effects of latitudinal and
longitudinal lunar libration. Since the orbit of the Moon
around the Earth is not in the equatorial plane of the Earth, a
terrestrial observer alternatively sees the north pole and
south pole of the Moon during each orbit. This is the
latitudinal libration. Further, the slightly elliptical orbit of
the Moon has the consequence that the Moon moves more
slowly at apogee than at perigee, and therefore is seen to be
wobbling around its axis of rotation. This is longitudinal
libration. An additional, very small dynamical libration
arises because the Moon is prolate, and its pointing wan-
ders. The dynamical libration adds to both the latitudinal
and longitudinal librations. These librations allow us to see
about 60% of the Moon’s surface. As a result of both kinds
of libration, for different cycles of the lunar orbit, even at
the same lunar phase, we would expect changes in the
positions of the fiducial patches on the lunar disk. The
readout intensity thus changes as a function of the geometric
position of the fiducial patches on the lunar disk. The
longitudinal and latitudinal librations cause the apparent
lunar phase function to be multivalued. To first order, we
derived a description of the deviation of the observed
intensity from the averaged intensity as a linear function
of the longitudinal and latitudinal librations, which goes as

Ii � �Ii ¼ a2L
a
i þ b2L

b
i þ c2 þ si; ð25Þ

where the Ii � �I i are the deviations of each night from the
mean, and where Li

a is the longitudinal libration and Li
b is

the latitudinal libration. Here, Li
a and Li

b really measure the
position of the lunar pole in the sky with respect to its mean
position, so that all the kinds of libration are taken into
account. From a least squares fit, we obtain the coefficients
a2 (morning/Grimaldi: 0.0019 ± 0.0004 and evening/
Crisium: �0.0018 ± 0.0004) and b2 (morning/Grimaldi:
4.2 * 10�5 ± 0.0003 and evening/Crisium: �0.0003 ±
0.0004), while c2 is one to two orders of magnitude smaller
than a2. Again the third term on the right side of equation
(25) is small compared to the first and second. All quoted
errors are ±1s. Since the magnitude of the a2’s are about an
order of magnitude greater than the b2’s, the longitudinal
libration is more significant than the latitudinal libration.
Figure 10 shows the result of fit, and, in particular, that the
fit describes the data, in that it can be seen that the observed
scattering at this step is mainly accounted for by the
libration. For the determination of Figure 10, we used 152
mornings and 168 evenings, and the correlation between the
fit and the data is 0.44/0.52 respectively. Using the
parameters from the fit, we then normalize the intensities
at all lunar phases to the case of zero libration with the
equation

I 0i ¼ Ii � a2L
a
i þ b2L

b
i

� 	
: ð26Þ

[57] To check the validity of the libration correction, we
performed the libration correction again but before
performing the atmospheric correction described in section
4.1. We next performed the atmospheric correction (which
still dominates) and the declination correction. At that point,
we performed the libration correction again, and we found
that Ii � �I i does not have a significant correlation with the
libration. In particular, the parameters from the linear fit of
equation (25) are reduced by an order of magnitude. This
test not only confirms the validity of the libration correction
performed above, but also guarantees that the three-step
corrections can be performed in any order. However, it

Figure 9. Deviation of the moonshine fiducial patch intensity from average against the deviation of the
overall intensity of the crescent. (left) Data points from morning observations of Grimaldi. (right) Data
points from evening observations of Crisium. The solid lines show the linear fit to each cluster of points.
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remains for us to determine the lunar phase function for
small phase angles.

4.4. Opposition Effect

[58] To this point, the lunar phase function is incomplete
because it is not normalized, and we have not determined its
functional form for the smallest phase angles. To do these,
we need to know the phase function for small phase angles,
and that means that the final lunar phase function for each
fiducial patch needs to be normalized to the full Moon
opposition peak. In reality, the Moon is not observable at
zero lunar phase because the shadow of the Earth would
occult the Moon, as the Earth’s shadow occupies about
±0.8�. So far, the smallest phase we have reached is ±1.0�
on the night of 29 November 1993, when a total lunar
eclipse occurred over Big Bear. On that night, the sky was
clear and stable throughout, and observations were made
both before and after the total eclipse, covering lunar phase
angles of magnitude ranging between about 1� and 2�,
which offers a unique data set to investigate the slope of
the opposition surge effect for all fiducial patches on both
the Grimaldi and the Crisium sides.
[59] The images taken during the eclipse were processed,

and the intensities of the fiducial patches were read out as
described in Section 4.1. The atmospheric attenuation has to
be corrected to obtain the real moonshine intensity. How-
ever, throughout the night, the evolution of the moonshine
intensity was controlled not solely by the changing air mass,
but also by the changing phase angle. This latter effect is
appreciable because of the strong opposition effect at small
lunar phase angles. As a result, the shape of the intensity
evolution for the two patches deviates strongly, compared to
the precision in the data, from Beer’s law (see Figures 11a
and 11c). Thus equation (19) can no longer produce a
reasonable fit.
[60] We developed a simple solution to this problem

under the reasonable assumption that the opposition effect
is linear for very small phase angles, say, from 0 to 5�
[Hapke, 1971; Hapke et al., 1998]. During the eclipse, the
phase angle changes by <2� for either the Crisium branch or
the Grimaldi branch. To determine the slope of the oppo-

sition peak for each of the 10 fiducial patches, we represent
the observed intensity by

Ii ¼ I0 1� g Pij jð Þe�ahi ; ð27Þ

where Ii is the observed intensity at phase angle jPij
(in degrees) and air mass hi. In contrast to equation (19), I0
describes the intensity at both zero air mass and zero phase
angle. The second term on the right side describes the linear
increase of the phase function as the lunar phase goes to
zero. The last term describes the exponential atmospheric
attenuation, i.e., Beer’s law, where a is the atmospheric
extinction coefficient for the moonshine.
[61] In applying equation (27), we used the observed Ii,

after correcting for libration (section 4.3) at lunar phase Pi

and air mass hi in equation (27) above, and made a least
squares, nonlinear fit to obtain a, I0, and the linear oppo-
sition effect coefficient, g. While dealing with the very
smallest phase angle data, we made sure that all our points
were outside the penumbral shadow of the Earth. The fit
was made for all 10 fiducial patches. We did not correct for
the declination because the Moon is in total eclipse, and that
correction should be quite small. We collected about 40 data
points for the fit on each side of the Moon, i.e., before and
after totality, and the standard deviation of the final fit is at
the level of 0.5%. Figures 11b and 11d reveal the improve-
ment in fitting results for one pair of fiducial patches using
equation (27) instead of equation (19). The improvement is
typical of that for all 10 patches. From Figure 11, it is also
clear that equation (27) accurately describes the composite
effect of the opposition surge and Beer’s law. The fitted
opposition peak slope parameter, g, was then used to
normalize the phase function for each of the fiducial
patches. Figure 12 shows an example of the final lunar
phase function normalized to the opposition peak. Of
course, each fiducial patch has its own lunar phase function.
In detail, for lunar phase of 5� in Figure 12, we used the
slope, g, determined for very small angles to extrapolate to
the intensity at zero lunar phase from that at 5�, i.e., I(0) =
I(5)/(1 � g � 5). Then, we normalized that branch of the

Figure 10. Deviation of the moonshine fiducial patch intensity (after the first and second step
corrections) from average against the deviation as a fitting result from equation (25). (left) Data points
from morning observations. (right) Data points from evening observations.
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phase function, using its g and I(0) = 1 to fix I(5).
Combining our knowledge of I(5) with the relative phase
function indicated by the +’s in Figure 12, we obtained the
right branch of Figure 12. The normalization removes the
ratio of the geometrical albedos between the two patches,
which is restored in equation (28). The eclipse does not give
us data for lunar phase 2� < jqj < 5�, where we have also
assumed a linear form for the phase function. Nights at
these small phase angles occur at the fullest of full Moons,
and we have only a few cases. We will enrich our data in
this region as time goes on, and can further sharpen our
phase function. If there were a systematic error here, it
would shift all of our Bond albedos by the same amount.
We expect such a systematic error is actually quite small,
but we would be able to recalibrate our present results in the
light of future data.
[62] In Table 3, we list the values of the derived opposi-

tion coefficients, g, for all 10 fiducial patches. The value of
g for all fiducial patches is approximately 0.08 per degree,
indicating that when lunar phase changes from 6� to 0� (full

Moon), the intensity doubles. This is the well-known
opposition surge which had not been quantitatively deter-
mined previously but already estimated by Hapke [1971]
and other more recent works. The standard deviation in the
determination of g is about 0.5%.
[63] The parameter I0 is also used to obtain the ratio of the

earthshine patch reflectivity to the moonshine patch reflec-
tivity pa/pb. Table 4 gives the ratios determined between
each of the five Crisium patch reflectivities to the each of
Grimaldi patch reflectivities.
[64] In Figure 12d, we show the lunar phase function with

final fit. The same fit is shown in Figures 12a–12c, as well.
The points in the Figure 12a represent a normalized version
of Figure 8. Figure 12b shows the result after correction for
local atmospheric effects, which is the largest correction.
Figures 12c and 12d show the effects of lunar declination
and libration, respectively. The lunar phase function is
produced from a fifth-degree weighted polynomial fit to
the corrected data. After each step of correction, the
standard deviation of the fit is reduced from originally

Figure 11. Fit of lunar eclipse data obtained on 29 November 1993. (a) Beer’s law fit of the Crisium side
(equation (19)). (b) Composite Beer’s law plus opposition effect fit on the Crisium side (equation (27)).
(c) Same as Figure 11a but on the Grimaldi side. (d) Same as Figure 11b but on the Grimaldi side.
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0.05/0.05 (evening/morning) to eventually 0.01/0.01, with
the phase function normalized to unity. A restricted regu-
larized fitting is performed as well, which parameterizes the
intensities at 181 bins (corresponding to lunar phase 0� to
180�).

[65] These 181 parameters from the fitting describe the
lunar phase function, in that the intensity of any lunar phase
is the linear interpolation between the values at the two
grids into which the lunar phase falls. Note that since there
are no data points beyond 150�, the phase function fit

Figure 12. (a) Apparent, relative lunar phase function from the raw data, for which there are points
down to 2�. The function is made relative by normalizing it to unity at phase angle 0�, which means that
the ratio of the true right and left branch intensities yields the ratio of the geometrical albedos between
Crisium and Grimaldi. The peak near small-phase angles represents the opposition effect. Data from a
total eclipse are used to connect the positive and negative phase branches of the lunar phase function. No
eclipse data are shown, but the result of the eclipse data is the opposition peak. (b) Result after including
correction for the local atmospheric effects, using the lunar crescent as a photometric reference star.
(c) Includes the correction for lunar declination. (d) Includes the correction for lunar libration. The fit
shown in each panel is the final fit to the data after all the corrections described in section 5 have been
performed.

Table 3. Opposition Effect gsa

Patch 1 2 3 4 5

Grimaldi side 0.084 0.078 0.083 0.079 0.083
Crisium side 0.086 0.079 0.076 0.083 0.083

aSee equation (27).

Table 4. pa/pb (Crisium Side/Grimaldi Side)

Patch 1 2 3 4 5

6 1.121 1.130 1.141 1.086 1.109
7 1.041 1.050 1.060 1.009 1.030
8 0.919 0.926 0.935 0.890 0.909
9 0.983 0.991 1.001 0.953 0.972
10 0.989 0.996 1.006 0.958 0.978
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beyond this range is not reliable. Similarly, there are not
enough data points within ±5�, and so, we used the eclipse
data to determine the fitted peak in Figure 12 by treating
opposition effect at small phase angles (near the full Moon).
From the final fit, the estimated error of the mean is at the
level of 0.5%; thus, we have measured the lunar phase to
0.5%. How does the phase function in Figure 12d compare
with earlier efforts to determine it, like those of Danjon?
[66] In Figure 13, we plot Danjon’s fitted phase function

against our corrected one. The smallest lunar phase angle
measured by Danjon was only 11�. Danjon used slightly
different fiducial patches, but that is not the source of
differences, because the phase function shown is about the
same for all of our fiducial patches. Rather, the primary
source is the opposition surge which was unknown in
Danjon’s time. There is a clear offset in the Danjon phase
function which would yield uniformly higher albedos than
the true phase function. For our phase function, we have
eliminated this erroneous overestimate, by �20%, of the
Earth’s reflectance introduced by the phase function in
earlier incarnations of earthshine studies, like those of
Danjon.

5. Precision of the Determination of our Nightly
Earthshine Measurements

[67] The apparent albedo for an individual night is
calculated from the earthshine measurement for that night
by combining equations (9) and (17):

p* bð Þ ¼ 3

2fL

pbfb qð Þ
pafa q0ð Þ

Ia=Ta
Ib=Tb

R2
EM

R2
E

R2
ES

R2
MS

; ð28Þ

where (Ia/Ta)/(Ib/Tb) is the ratio of the earthshine intensity to
the moonshine intensity in two opposing fiducial patches,
after correcting for air mass. The ratio between the physical
reflectivity of the two opposing fiducial patches, pb/pa, is
determined from the lunar eclipse data taken at BBSO on 29

November 1993, as discussed in the previous section. The
lunar phase function for the bright side, fb(q), is used in
the formula to account for the geometrical dependence of
the reflectivity of the Moon, while fa(q0) accounts for the
fact that the earthshine is not exactly retroflected from the
Moon (q0 ] 1�). In our analysis, q0 is taken as the angle
between the observer’s position and the mean of the
subsolar point (position on the Earth’s surface of the solar
zenith) and the sublunar point (position on the Earth’s
surface of the Moon’s zenith) with the apex of the angle
being defined with respect to the fiducial patch under
consideration, see Figure 1. We assume that the moonshine
and earthshine have the same lunar phase function for each
fiducial patch. Thus we take fa(q0) from the appropriate
moonshine phase function. The earthshine is slightly bluer
than the moonshine because of Rayleigh scattering by the
Earth’s atmosphere. This small effect is subsumed in the
lunar geometrical albedos.
[68] From equation (28), one may surmise that the

observational errors arising from measuring p* from two
opposing fiducial patches come from the errors in the
readout intensity from the moonshine and earthshine fidu-
cial patches, the error in the transmission of the bright side
filter (about 0.8%, see Appendix B for details), and the error
in the determination of lunar phase function. The ratio pb/pa
can be regarded as the relative normalization of the phase
functions of the opposing fiducial patches. The standard
deviation of the lunar phase function can be determined
down to 0.5% from a covariance calculation with a com-
parable uncertainty for the ratio pb/pa. The standard devia-
tion of the Beer’s law fitting of the moonshine for each
night is taken as the error of the moonshine intensity. This
gives a value of 1.1%. For the case of the earthshine, the
scattering of the data is due to both the noise and the real
physical changes in the terrestrial albedo. The average
standard deviation from Beer’s law fitting of the earthshine
intensities is 1.9%. Conservatively speaking, if half the
amount of such scattering comes from the real physical
change on average, the error (s) in nightly earthshine
intensity measurement is about 1.0%. Adding up all the
errors and assuming they are independent, we get a nightly
measurement error of nearly 2%. If one regards the meas-
urements from different pairs as being independent, the 2%
is reduced to about 1%.
[69] The precise determination of the apparent albedo for

a single night cannot yield a Bond albedo; rather, one needs
to integrate the apparent albedo for many nights (over as
wide a range of lunar phase angles as possible). If we
combine nights to obtain, say, a seasonal average, then the
total error will be smaller, but no smaller than that associ-
ated with the mean values of the various lunar phase
functions and their relative normalizations. We regard the
determination of the ratio pb/pa as being the most likely
source of systematic errors. Measurements of the opposition
effect in future eclipses will allow us to determine if there
are systematic errors, and correct the albedos in retrospect.
[70] To determine the Bond albedo, A, from our earthshine

observations we need to integrate p*(q) over all phases of the
Moon. Combining equations (6), (7), and (9), we find

A ¼ 2

3

Z p

�p
dqp* qð ÞfL qð Þ sin q: ð29Þ

Figure 13. Danjon’s phase function (solid line) plotted
against lunar phase. Using Figure 12d, the dashed line is our
phase function for evening observations and the dotted line
for morning for the fiducial patch of Figure 12.
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[71] With our single earthshine station in Big Bear, our
‘‘global’’ albedo cover and area slightly larger than 2/3 of
the Earth, an areal coverage which will increase when more
earthshine stations are in operation.
[72] There are two basic problems using this approach to

determine the Bond albedo. The first, and more significant
problem, is that we cannot measure the earthshine for all
phases of the Moon. This becomes a problem mainly for
lunar phases near the new Moon, where the sunlight
reflected by the Earth is primarily in the direction of
backward scattered radiation. In Paper 2, however, we will
show that we can obtain a quite reliable Bond albedo from
the earthshine data with the help of the simulations. The
second basic problem in using the earthshine to determine
the albedo arises because the orbit of the Moon traces out an
ellipse in the full three-dimensional space surrounding the
Earth, so we cannot measure the earthshine in all directions.
Therefore with the earthshine we are insensitive to any
azimuthal anisotropy that might be present in the Earth’s
albedo. In the following paper of this series, we will show
that, according to our models, the anisotropy may not be
significant, and one can account for it. We do this by taking
advantage of the full spatial coverage provided by the
simulations. It is possible however that at present our models
are not sensitive enough to detect the anisotropy effect.
These are among the subjects of Paper 2 of this series.

6. Conclusions

[73] In this paper we have described in detail the meth-
odology followed in our earthshine observations from Big
Bear Solar Observatory, as well as the several steps neces-
sary to correct, extract and calibrate our nightly earthshine
measurements. From our earthshine measurements, we have
accurately measured the scattering from the Moon, as a
function of lunar phase, which enables us to measure, in a
typical night’s observations, the Earth’s reflectance to an
accuracy of 1.0%. We have also identified the lunar phase
function as the major source of discrepancy between Dan-
jon’s estimates of the albedo and more recent measurements.
[74] Thus from our earthshine measurements we can

derive estimates of the Earth’s albedo. We have seen that
with a single station this estimates have a precision (s) of 1%
over a year. When more than one earthshine station are
functional, measurements with an accuracy below 1% may
become possible, and we may be able to derive Bond
albedos of the order of 1% at seasonal or monthly timescales.

Appendix A: Earthshine Instrumentation and
Data Acquisition

[75] Earthshine observations are currently being carried
out at BBSO. The earthshine telescope is aligned with, and
mounted atop the 65 cm solar telescope. Figure A1 shows a
schematic of the earthshine telescope.

A1. Hardware

[76] The basic optical components of the earthshine
telescope consist of an f/15 telescope primary, which is a
15 cm diameter air-spaced doublet. The telescope tube is
attached and aligned with the 65 cm solar telescope, which
enables us to use the large telescope’s drive software,

permitting tracking following the Moon’s variable rate.
The tracking rate is updated, via software, every 30 min
to match the changing lunar motion in the east-west
direction. Minor north-south corrections are done with the
telescope control paddle as needed during the course of the
night’s observations. The 65 cm telescope is regularly
rebalanced for equipment changes so that tracking stability
is not a problem even with long exposures. At the end of the
tube is a stray light field stop. The incoming Moonlight
passes the field stop, and then enters a light-tight optical
assembly box that holds the filters and camera optics.
[77] In the box, just behind the tube field stop and just

before prime focus, is the earthshine neutral density filter
switcher. Two filters are placed in the switcher. The first
neutral density filter is a Schott NG3 2 mm (the laboratory
measured transmission of the filter, used for the first 2 years
of observations, is 0.0115, as a whole, from 4000–7000 Å)
for the bright side (BS) measurements. The BS or moon-
shine filter covers the entire field of view and is in place to
prevent camera saturation and to provide a reasonably long
exposure time (several 100 ms) compared to the smallest
exposure time for the camera (10 ms). Thus to determine the
absolute value of the Earth’s reflectance, one needs to know
precisely the transmission of this filter. The second filter is a
Schott NG10 2 mm (transmission is about 2 � 10�5 over
4000–6000 Å, although its precise value is irrelevant for
our observations), which is essentially a blocking filter to
cut off the bright side of the Moon to permit the dark side or
earthshine (ES) observations. The blocking filter covers the
bright side of the Moon to permit long, dark side exposures
(�60–150 s) to get optimal signal to noise for the ES
images. The blocking filter is carefully placed within the
filter holder, by hand, at the beginning of each observing
session. Its location, designed to cover the terminator,
depends on the phase and libration of the Moon.
[78] The prime focus is after the filter holder, and it is

closely followed by a flat field lens. Next in the optical train
are two near-IR filters, which stop any light beyond 7000 Å
from reaching the camera. An iris behind the near-IR filters
acts as a further stray light stop. Behind the iris is a camera
lens that focuses the lunar image on the CCD. Between this
lens and the camera is a space for a second filter wheel (not
shown), which can be used for narrow band measurements.
All elements are rail mounted for linear adjustments, and
lens elements are in movable y � z mountings for fine
adjustments. All fine tuning was done in the Fall of 1998,
and nothing has been changed on the system since the start
of data acquisition in December 1998. The system was
‘‘frozen’’ to limit possible errors in calibrating the lunar

Figure A1. Optical setup of the earthshine telescope.
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phase function. Flat field images help to point out the
location of occasional dust particles that get into the optics.
Compressed air removes most particles, and when neces-
sary, elements are removed for cleaning, and then are
carefully replaced to preserve optical alignment.
[79] The CCD camera used in our current earthshine

observations is an Apogee 7. The camera is a 512 � 512
16-bit scientific system with a SITe back-illuminated,
thinned silicon chip. This chip, which is one of SITe’s
highest grade, is designed for higher quantum efficiency
than unthinned front illuminated chips; this advantage is
most apparent toward the blue. One drawback of the higher
efficiency SITe chip is its sensitivity to ‘‘after images’’
caused by exposure to UV. Testing the earthshine system to
limit this effect resulted in the following observing proce-
dures. (1) The UV from the BS images is reduced by the BS
(NG3) filter. (2) The worst after images show up in the ES
images on the unfiltered half of the image, which are of long
exposure. It was found that a series of subsequent, short BS
images, the UV residual image was removed before the next
long earthshine exposure. (3) Careful examination of dark
current and flat field images taken during the course of
observations is done to confirm this, night by night.
[80] Initial testing demonstrated a linear response over the

camera’s entire 16-bit range. To check for change in the
camera’s response with time, a calibrated radiometer was
purchased to check the camera’s response during each new
Moon. Dome flats are taken in varying illumination to get
pixel count versus intensity. The radiometer is an IL 1700, a
NIST traceable Silicon photodiode radiometer. Once a year,
the radiometer will be returned to International Light for
recalibration.

A2. Observations

[81] After initial tests, our current round of earthshine
observations began in November 1998. A typical raw image
is shown in Figure 3. The five pairs of fiducial patches used
in the data reduction (see section 3) are also indicated. The
camera’s graphic user interface, in C code, was supplied by
the manufacturer, and it was modified to efficiently handle
the routine earthshine observations. The nightly observa-
tions follow a simple set of procedures, which are mostly
automated. During the course of observations BS, ES, dark
current, and flat field images are taken regularly.
[82] The first 8 months of observations covered lunar

phases between 0� and ±140�, which is about 21 days a
month. The initial observation over this wide range of
phases was necessary to determine the lunar phase function
and prove its repeatability. During the first 8 months, for the
phases near the full Moon (�40� through 0� to +40�), ES
images were not taken because both fiducial patches were
in, or so near to sunlight that ES measurements were
unreliable (see cartoons in Figure 1). On these nights only
BS, dark current, and flat fields, were taken to determine the
scattering of light from the fiducial patches as a function of
the phase of the Moon. The lunar phase function was
determined by July 1999, so that the BS only nights were
dropped, except for observations of the full Moon. Full
Moon observations are still taken to determine the role of
the opposition effect [Flatte et al., 1991] in the lunar phase
function (phases �15� to +15�). Current earthshine obser-
vations cover about 14 days per month, and cover lunar

phases between ±40� to ±150� centered on the first and last
quarters of the Moon when we have optimal conditions for
measuring the earthshine: close to full-Earth with a few
hours of observations being possible. Data rates vary
depending on phase. An average night will give about one
image per minute. This means that the number of raw
images saved for data reduction, varies between 100 to
600 per night.

Appendix B: Measuring the Transmission of the
Bright Side Filter

[83] A precise determination of the Earth’s reflectance
from observing the Moon depends on an accurate measure-
ment of the ratio of the true earthshine intensity to the true
moonshine intensity. This determination is complicated by
the fact that the moonshine is so bright that when we
measure it, we must use a filter (see Figure 3) that reduces
the intensity of the moonshine by about 99%. The reduction
enables us to have a reasonably long exposure time (of
order a few 100 ms) compared to the shortest possible
exposure time of the camera (10 ms). When we observe the
earthshine, the moonshine or BS filter is removed and
the much stronger, blocking filter is inserted to block the
moonshine to prevent camera blooming during the much
longer exposures. Thus to know the true ratio of the
earthshine to moonshine intensity, we must also precisely
determine the transmission of the moonshine filter at the
point through which the Moonlight passes (point-to-point
variations could well be significant). This fact became
abundantly clear after 13 October 2000 when the original
filter was destroyed, and was replaced by one that was
comparable in the lab specifications for the transmission
over the whole filter. Initially, we assumed that the trans-
mission of the new filter was the same as the old one.
However, we found that the observed moonshine intensity
noticeably increased, indicating that the new filter has a
significantly larger transmission than the old filter.
[84] In the observations, the moonshine filter, MS, is

placed at a fixed position in the focal plane covering the
entire lunar image, so that the light always passes through
the same point on the filter. This is important because there
is some point-to-point variation in the transmission of the
filter. In our effort to precisely determine the transmissions
of the old and new BS filters at the focal point of the lunar
image, we first employed identical approaches for both of
the filters. To measure the transmission of the old filter, we
reanalyzed 30 nights of moonshine and earthshine data that
we had in hand for nights near the new Moon, where the
earthshine signal is most intense. To illustrate the reanalysis
procedure, one can look at Figure B1 for guidance. For that
night, with the old filter, we measured the total earthshine
intensity in five parallel strips, somewhat wider than the
fiducial patches and running from the earthshine fiducial
points toward the moonshine crescent. In Figure B1, the
five strips are shown together as a striped, bright, four-
cornered patch. Each strip in the bright patch runs from the
edge of the Moon and is 5� wide in latitude and 30� long in
longitude. That way, each strip would have a statistically
significant number of counts in the earthshine region, even
for the relatively short exposure times of a few hundred
milliseconds, used on that, and other nights, for each data
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point with the BS filter in place (but without the much
stronger blocking filter in place). The lunar phase in Figure
B1 is +134�. Large magnitude phase angles are chosen so
that the earthshine is the brightest, while the stray light the
smallest. The determination of the transmission of the old
BS filter is shown for that typical night in Figure B2. The
dark side of the moonshine and the earthshine intensities are
each extrapolated to zero air mass and corrected for the
small effect of stray light, and their ratio yields a transmis-
sion of 0.0114 ± 0.005 for that night. The error weighted
mean transmission for all 30 nights is 0.01127 ± 0.00011 for
the old filter. Implicit in this approach to determining the
broadband transmission of the filter is the assumption that
the spectrum of the earthshine and moonshine are roughly
the same; this assumption works here because the transmis-
sion curve of the filter is flat over visible wavelengths. Most
of the noise in the result arises from the short exposure time
for the MS filter covered observations. The 0.01127 ±
0.00011 is within the factory quoted value of the 0.0115
given by Schott. The tolerance range over the 400–700 nm
range of our observations is ±2%.
[85] For the new filter, we have reanalyzed 12 nights of

data in the same way and find a transmission of 0.01338 ±
0.00017 for the focal point, whereas the factory-reported
average across the filter is 0.0114. The latter transmission is
nearly identical to that of the old filter, but quite far from
0.01338 ± 0.00017. The larger transmission at the focal

point accounts for the apparent rise in moonshine intensity
after 13 October 2000. We will continue collecting more
data on the transmission using future data. However, we
have a more powerful and more precise cross check in hand:
using lunar phase function data on the crescent and moon-
shine, which we know to 0.5%.
[86] Analyzing all of our good nights of moonshine

observations, with the new and old new filter, at all phases,
we have constructed for each a lunar phase function: the
change in brightness with lunar phase for the moonshine
and crescent intensities. From all these nights, we have
selected the nights during the period for which the old filter
was used, and then we calculated a second-degree polyno-
mial fit to the lunar phase data. The data for these nights

Figure B1. Image of the earthshine on the night of 1
February 2000 shown with the blocking filter, which
enables long exposures of the earthshine. The bright,
rectangular patch indicates the area of five strips used to
compare the earthshine intensity with and without the
moonshine filter (BS filter) so as to determine the
transmission of the BS filter. The lunar phase was +134�
that night, and so the earthshine signal is relatively strong.
The crescent is not visible through the strong blocking filter
in the original image but has been restored here for
reference. See color version of this figure in the HTML.

Figure B2. (top) Observed, BS filter-blocked earthshine
intensity as a function of air mass on 1 February 2000. The
crosses represent the intensity of one of the stripes. The
linear fit to the data has been extrapolated to zero air mass,
with that result being indicated by the asterisk, which is the
leftmost mark on the fit. (bottom) Same type of data but
without the BS filter. The ratio of the two intensities, for that
night, extrapolated to zero air mass and corrected for the
small effect of stray light, implies a MS filter transmission
of 0.0114 ± 0.0005. The lunar phase that night was +134�.
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have been reduced using a transmission value of 0.01127.
After that, we analyze the phase function for the nights
taken with the new filter and calculate the standard devia-
tion of the values to the lunar phase function fit to the old
data, but leave the new filter transmission as a variable.
[87] Our procedures consist of multiplying the intensities

of the new phase function data by a factor between 0.9 to
1.4 in steps of 0.0001, and for each case calculating the
standard deviation to the old data fit. The agreement of the
new data with the fit to the old data will be optimal when
the standard deviation is minimized.
[88] We find the best agreement between the two lunar

phase functions when the transmission of the new filter is
0.0132 (0.01319 for the moonshine and 0.01322 for the
crescent). This is excellent agreement with the transmission
determined from the first method. Thus we have precisely
determined the transmission of the new filter to the same
precision as the old filter, so that we use 0.0132 ± 0.0001 as
its transmission after including errors in the phase function.
As we gather more data on the new filter, we can determine
its transmission to the same precision to which we know the
lunar phase function, and then the error on the transmission
can be reduced to about ±0.00005. Following that, we can
use this information to reduce the quoted precision of the
old filter to that for the lunar phase function determined for
the old filter.
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